• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Si (Chen, Si.) | An, Tong (An, Tong.) (Scholars:安彤) | Qin, Fei (Qin, Fei.) (Scholars:秦飞) | Chen, Pei (Chen, Pei.)

Indexed by:

EI Scopus SCIE

Abstract:

Through-silicon vias (TSVs) have become an important technology for three-dimensional integrated circuit (3D IC) packaging. Protrusion of electroplated Cu-filled vias is a critical reliability issue for TSV technology. In this work, thermal cycling tests were carried out to identify how the microstructure affects protrusion during thermal cycling. Cu protrusion occurs when the loading temperature is higher than 149A degrees C. During the first five thermal cycles, the grain size of Cu plays a dominant role in the protrusion behavior. Larger Cu grain size before thermal cycling results in greater Cu protrusion. With increasing thermal cycle number, the effect of the Cu grain size reduces and the microstrain begins to dominate the Cu protrusion behavior. Higher magnitude of microstrain within Cu results in greater protrusion increment during subsequent thermal cycles. When the thermal cycle number reaches 25, the protrusion rate of Cu slows down due to strain hardening. After 30 thermal cycles, the Cu protrusion stabilizes within the range of 1.92 mu m to 2.09 mu m.

Keyword:

thermal cycling test electroplated copper microstructure protrusion Through-silicon vias

Author Community:

  • [ 1 ] [Chen, Si]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [An, Tong]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Qin, Fei]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Pei]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 安彤

    [An, Tong]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF ELECTRONIC MATERIALS

ISSN: 0361-5235

Year: 2017

Issue: 10

Volume: 46

Page: 5916-5932

2 . 1 0 0

JCR@2022

ESI Discipline: MATERIALS SCIENCE;

ESI HC Threshold:287

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 11

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:1454/10611581
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.