Indexed by:
Abstract:
GeSbTe alloys have the ability of rapidly transforming between amorphous and crystalline phases. Therefore, they can be used in the non-volatile phase change memory. Recently, a vacancy-ordered cubic Ge2Sb2Te5 (VOC GST) phase change material where the vacancies are highly ordered in the (111) plane, has been experimentally demonstrated by STEM. However, studies are mainly on the structural characterization, rather than on the phase change behavior and possible applications of the VOC GST. Here, using first-principles molecular dynamic simulations, we study the melt-quenched amorphization process and its possible applications. We find that the VOC GST exhibits a quasi-two-dimensional amorphization process that is triggered by the diffusion of Ge atoms but not others. A partial amorphous (P-amor) phase is obtained, which can act as an intermediate state between the pure amorphous and pure crystalline phases for possible ternary-state data storage. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ACTA MATERIALIA
ISSN: 1359-6454
Year: 2017
Volume: 136
Page: 242-248
9 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:287
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 33
SCOPUS Cited Count: 33
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: