Indexed by:
Abstract:
Machine-to-machine (M2M) communications have attracted great attention from both academia and industry. In this paper, with recent advances in wireless network virtualization and software-defined networking (SDN), we propose a novel framework for M2M communications in software-defined cellular networks with wireless network virtualization. In the proposed framework, according to different functions and quality-of-service (QoS) requirements ofmachine-type communication devices, a hypervisor enables the virtualization of the physical M2M network, which is abstracted and sliced into multiple virtual M2M networks. In addition, we develop a decision-theoretic approach to optimize the random access process of M2M communications. Furthermore, we develop a feedback and control loop to dynamically adjust the number of resource blocks that are used in the random access phase in a virtual M2M network by the SDN controller. Extensive simulation results with different system parameters are presented to show the performance of the proposed scheme.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
ISSN: 0018-9545
Year: 2017
Issue: 7
Volume: 66
Page: 6399-6414
6 . 8 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:165
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 30
SCOPUS Cited Count: 37
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: