Indexed by:
Abstract:
We demonstrate the fabrication of in-plane and multi-layer 3D micro-supercapacitors (MSCs) based on laser carbonization of polyimide (PI) sheets. Focused femtosecond (fs) laser pulses rapidly convert the insulating PI into an electrically conductive porous carbon structure. The specific capacitance of the single-layer supercapacitor with a thickness of 80 mm reaches 22.40 mF/cm(2) (2.8 F/cm(3)) at 0.1 mA/cm(2) charge-discharge current density. The high performance is attributed to hierarchical porous structures and the appropriate heteroatom nitrogen/oxygen doping. The 2-layer and 3-layer stacked MSCs show an improved specific capacitance as high as 37.2 mF/cm(2) and 42.6 mF/cm(2) at a current density of 0.1 mA/ cm(2), respectively, which are attractive values among the carbon material-based MSCs reported till now. The voltage and capacitance can be scaled up by simply writing MSC arrays in serial and parallel connections. The facile fabrication and superior performance of carbon-based MSCs fabricated by laser direct writing may pave the way for promising applications of flexible, portable, and wearable electronic devices. (C) 2017 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ELECTROCHIMICA ACTA
ISSN: 0013-4686
Year: 2017
Volume: 241
Page: 153-161
6 . 6 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:212
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 104
SCOPUS Cited Count: 108
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: