• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xie, Shaohua (Xie, Shaohua.) | Liu, Yuxi (Liu, Yuxi.) | Deng, Jiguang (Deng, Jiguang.) | Zhao, Xingtian (Zhao, Xingtian.) | Yang, Jun (Yang, Jun.) | Zhang, Kunfeng (Zhang, Kunfeng.) | Han, Zhuo (Han, Zhuo.) | Arandiyan, Hamidreza (Arandiyan, Hamidreza.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴)

Indexed by:

EI Scopus SCIE

Abstract:

Palladium-based catalysts are highly active for eliminating volatile organic compounds. Reducing the use of noble metals and enhancing performance of a catalyst are always desirable. The three-dimensionally ordered macroporous (3DOM) Mn2O3-supported transition metal M (M=Mn, Cr, Fe, and Co)-doped Au-Pd nanoparticles (NPs) with an Au-Pd-xM loading of 1.86-1.97 wt% were prepared using the modified polyvinyl alcohol-protected reduction method. It is found that the Au-Pd-xM NPs with a size of 3.6-4.4nm were highly dispersed on the surface of 3DOM Mn2O3. The 1.94wt% Au-Pd-0.21Co/3DOM Mn2O3 and 1.94wt% Au-Pd-0.22Fe/3DOM Mn2O3 samples performed the best for the oxidation of methane and o-xylene, respectively. The methane oxidation rate at 340 degrees C (339.0 x 10(-6) mol/(g(pd) s)) over 1.94wt% Au-Pd-0.21Co/3DOM Mn2O3 was three times higher than that (93.8 x 10-6 mol/(gpd s)) over 1.97 wt% Au-Pd/3DOM Mn2O3, and the o-xylene reaction rate at 140 degrees C (2.59 mu mol/(g(N) s) over 1.94wt% Au-Pd-0.22Fe/3DOM Mn2O3 was two times higher than that (0.93 mu mol/(g(N) s) over 1.97 wt% Au-Pd/3DOM Mn2O3. It is concluded that doping a certain amount of the transition metal to Au-Pd/3 DOM Mn2O3 could modify the microstructure of the alloy NPs, thus improving the oxygen activation and methane adsorption ability. We are sure that the M-doped Au-Pd/3DOM Mn2O3 materials are promising catalysts for the efficient removal of volatile organic compounds. (C) 2017 Elsevier B.V. All rights reserved.

Keyword:

O-xylene oxidation Three-dimensionally ordered macroporous Oxygen activation Transition metal-doped Au-Pd nanoparticle Methane oxidation Mn2O3

Author Community:

  • [ 1 ] [Xie, Shaohua]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yuxi]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 3 ] [Deng, Jiguang]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Xingtian]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Jun]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Kunfeng]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 7 ] [Han, Zhuo]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 8 ] [Dai, Hongxing]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China
  • [ 9 ] [Xie, Shaohua]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 10 ] [Liu, Yuxi]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 11 ] [Deng, Jiguang]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 12 ] [Zhao, Xingtian]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 13 ] [Yang, Jun]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 14 ] [Zhang, Kunfeng]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 15 ] [Han, Zhuo]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 16 ] [Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 17 ] [Arandiyan, Hamidreza]Univ New South Wales, Sch Chem Engn, Particles & Catalysis Res Grp, Sydney, NSW 2052, Australia

Reprint Author's Address:

  • 邓积光 戴洪兴

    [Liu, Yuxi]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China;;[Deng, Jiguang]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Beijing Key Lab Green Catalysis & Separat, Key Lab Beijing Reg Air Pollut Control, Key Lab Adv Funct Mat,Educ Minist China, Beijing 100124, Peoples R China;;[Liu, Yuxi]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Deng, Jiguang]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Lab Catalysis Chem & Nanosci, Dept Chem & Chem Engn, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

APPLIED CATALYSIS B-ENVIRONMENTAL

ISSN: 0926-3373

Year: 2017

Volume: 206

Page: 221-232

2 2 . 1 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:212

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 135

SCOPUS Cited Count: 134

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 3

Online/Total:477/10580044
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.