Indexed by:
Abstract:
Codebook-based speech enhancement approach is an effective method for reducing non-stationary noise. In view of the inaccurate problem of estimating the short-term predictor parameters of the speech and noise, this paper proposes a codebook-based maximum posteriori probability (MAP) speech enhancement approach by combining MAP estimation and codebook-based method. Based on the prior information and inter-frame correlation of the short-term predictor parameters, the paper develops both memoryless and memory-based MAP predictor parameters estimators which optimally get the spectral shapes and the corresponding excitation variances. In order to further improve the accuracy of the parameters, a novel approach of estimating the excitation variances is proposed for the memory-based case. Experimental results show that, in comparison with the reference method, the proposed method can get better performance under various noise conditions. © 2015 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
2015 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2015
Year: 2015
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: