• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Gao, Jing-Feng (Gao, Jing-Feng.) (Scholars:高景峰) | Fan, Xiao-Yan (Fan, Xiao-Yan.) (Scholars:樊晓燕) | Li, Hong-Yu (Li, Hong-Yu.) | Pan, Kai-Ling (Pan, Kai-Ling.)

Indexed by:

EI Scopus SCIE

Abstract:

Bacteria are ubiquitous and abundant in the atmosphere and some of them are potential pathogens known to cause diseases or allergies in humans. However, the quantities and compositions of total airborne bacterial community and their relationships with environmental factors remain poorly investigated. Here, a case study of the total airborne bacteria of PM2.5 collected at six cities in Beijing-Tianjin-Hebei (BTH) megalopolis, China were profiled using quantitative polymerase chain reaction (qPCR) and Illumina MiSeq (PE300) sequencing. qPCR results showed the high abundance of total airborne bacteria of PM2.5 in BTH, ranging from 4.82 x 10(4) +/- 1.58 x 10(3) to 2.64 x 10(5) +/- 9.63 x 10(4) cell m(-3) air, and averaged 1.19 x 10(5) cell m(-3) air. The six PM2.(5) samples were classified into three groups. Proteobacteria, Cyanobacteria, Actinobacteria and Firmicutes were the four dominant phyla of PM2.5. 18 common potential pathogens with extremely low percentage (3.61%) were observed, which were dominated by Enterococcus faecium and Escherichia coli. Plants and soil are probably the main sources of bacteria in PM2.5, as suggested by the high percentages of Chloroplast, plant-associated bacteria (e.g., Rhizobiales and Sphingomonadales) and soil-inhabiting bacteria (e.g., Burkholderiales and Pseudomonadales). Variation partitioning analysis (VPA) indicated that the atmospheric pollutants explained the most of the variation (31.90%) in community structure of PM2.5, followed by meteorological conditions (15.73%) and the chemical compositions of PM2.5 (11.32%). The case study furthers our understanding of the diversity and composition of airborne bacterial communities of PM2.5 in BTH, and also identified the main factors shaping the bacterial communities.

Keyword:

Airborne bacterial communities Potential pathogens Illumina MiSeq sequencing Beijing-Tianjin-Hebei megalopolis PM2.5

Author Community:

  • [ 1 ] [Gao, Jing-Feng]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Xiao-Yan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Hong-Yu]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Pan, Kai-Ling]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 高景峰

    [Gao, Jing-Feng]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

AEROSOL AND AIR QUALITY RESEARCH

ISSN: 1680-8584

Year: 2017

Issue: 3

Volume: 17

Page: 788-798

4 . 0 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:228

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 47

SCOPUS Cited Count: 53

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 16

Online/Total:2180/10655401
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.