Query:
学者姓名:孔德慧
Refining:
Year
Type
Indexed by
Source
Complex
Co-Author
Language
Clean All
Abstract :
弱监督时序动作定位任务的目标是在只有视频级标签的情况下,对未分割的视频中的动作进行分类和时序上的定位。目前基于神经网络模型的方法,大多训练分类器以预测视频片段级的类别分数,再融合其为视频级的类别分数。这些方法只关注视频的视觉特征,却忽视了视频语义结构信息。为进一步提升视频动作定位的质量,本文提出了一种视频语义结构信息辅助的弱监督时序动作定位方法。该方法首先以分类模块作为基础模型,然后基于视频在时序结构上的稀疏性和语义连续性等辅助信息设计一种平滑注意力模块,修正分类结果;另外,加入视频片段级语义标签预测模块,改善弱监督标签信息不充足问题;最后将三个模块共同训练以融合提升时序动作定位的精度。通过在THUMOS14和ActivityNet数据集上的实验,表明本文方法的性能指标明显优于目前现有方法。
Keyword :
语义结构信息 语义结构信息 伪标签 伪标签 注意力值 注意力值 动作定位 动作定位 弱监督 弱监督
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 孔德慧 , 许梦文 , 李敬华 et al. 一种视频语义结构信息辅助的弱监督时序动作定位方法 [C] //2021中国自动化大会论文集 . 2022 . |
MLA | 孔德慧 et al. "一种视频语义结构信息辅助的弱监督时序动作定位方法" 2021中国自动化大会论文集 . (2022) . |
APA | 孔德慧 , 许梦文 , 李敬华 , 王少帆 , 尹宝才 . 一种视频语义结构信息辅助的弱监督时序动作定位方法 2021中国自动化大会论文集 . (2022) . |
Export to | NoteExpress RIS BibTex |
Abstract :
3D pose estimation remains a challenging task since human poses exhibit high ambiguity and multigranularity. Traditional graph convolution networks (GCNs) accomplish the task by modeling all skeletons as an entire graph, and are unable to fuse combinable part-based features. By observing that human movements occur due to part of human body (i.e. related skeletons and body components, known as the poselet) and those poselets contribute to each movement in a hierarchical fashion, we propose a hierarchical poselet-guided graph convolutional network (HPGCN) for 3D pose estimation from 2D poses. HPGCN sets five primitives of human body as basic poselets, and constitutes high-level poselets according to the kinematic configuration of human body. Moreover, HPGCN forms a fundamental unit by using a diagonally dominant graph convolution layer and a non-local layer, which corporately capture the multi-granular feature of human poses from local to global perspective. Finally HPGCN designs a geometric constraint loss function with constraints on lengths and directions of bone vectors, which help produce reasonable pose regression. We verify the effectiveness of HPGCN on three public 3D human pose benchmarks. Experimental results show that HPGCN outperforms several state-of-the-art methods. (c) 2021 Elsevier B.V.
Keyword :
Graph convolutional network Graph convolutional network Hierarchical poselet Hierarchical poselet Geometric constraint Geometric constraint Diagonally dominant graph convolution Diagonally dominant graph convolution Pose estimation Pose estimation
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Wu, Yongpeng , Kong, Dehui , Wang, Shaofan et al. HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation [J]. | NEUROCOMPUTING , 2022 , 487 : 243-256 . |
MLA | Wu, Yongpeng et al. "HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation" . | NEUROCOMPUTING 487 (2022) : 243-256 . |
APA | Wu, Yongpeng , Kong, Dehui , Wang, Shaofan , Li, Jinghua , Yin, Baocai . HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation . | NEUROCOMPUTING , 2022 , 487 , 243-256 . |
Export to | NoteExpress RIS BibTex |
Abstract :
Featured Application The vehicle detection algorithm proposed in this work could be used in autonomous driving systems to understand the environment, or could be applied in surveillance systems to extract useful transportation information through a camera. Vehicle detection as a special case of object detection has practical meaning but faces challenges, such as the difficulty of detecting vehicles of various orientations, the serious influence from occlusion, the clutter of background, etc. In addition, existing effective approaches, like deep-learning-based ones, demand a large amount of training time and data, which causes trouble for their application. In this work, we propose a dictionary-learning-based vehicle detection approach which explicitly addresses these problems. Specifically, an ensemble of sparse-and-dense dictionaries (ESDD) are learned through supervised low-rank decomposition; each pair of sparse-and-dense dictionaries (SDD) in the ensemble is trained to represent either a subcategory of vehicle (corresponding to certain orientation range or occlusion level) or a subcategory of background (corresponding to a cluster of background patterns) and only gives good reconstructions to samples of the corresponding subcategory, making the ESDD capable of classifying vehicles from background even though they exhibit various appearances. We further organize ESDD into a two-level cascade (CESDD) to perform coarse-to-fine two-stage classification for better performance and computation reduction. The CESDD is then coupled with a downstream AdaBoost process to generate robust classifications. The proposed CESDD model is used as a window classifier in a sliding-window scan process over image pyramids to produce multi-scale detections, and an adapted mean-shift-like non-maximum suppression process is adopted to remove duplicate detections. Our CESDD vehicle detection approach is evaluated on KITTI dataset and compared with other strong counterparts; the experimental results exhibit the effectiveness of CESDD-based classification and detection, and the training of CESDD only demands small amount of time and data.
Keyword :
ensemble learning ensemble learning object detection object detection dictionary learning dictionary learning vehicle detection vehicle detection
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Rong, Zihao , Wang, Shaofan , Kong, Dehui et al. A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection [J]. | APPLIED SCIENCES-BASEL , 2021 , 11 (4) . |
MLA | Rong, Zihao et al. "A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection" . | APPLIED SCIENCES-BASEL 11 . 4 (2021) . |
APA | Rong, Zihao , Wang, Shaofan , Kong, Dehui , Yin, Baocai . A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection . | APPLIED SCIENCES-BASEL , 2021 , 11 (4) . |
Export to | NoteExpress RIS BibTex |
Abstract :
弱监督时序动作定位任务的目标是在只有视频级标签的情况下,对未分割的视频中的动作进行分类和时序上的定位。目前基于神经网络模型的方法,大多训练分类器以预测视频片段级的类别分数,再融合其为视频级的类别分数。这些方法只关注视频的视觉特征,却忽视了视频语义结构信息。为进一步提升视频动作定位的质量,本文提出了一种视频语义结构信息辅助的弱监督时序动作定位方法。该方法首先以分类模块作为基础模型,然后基于视频在时序结构上的稀疏性和语义连续性等辅助信息设计一种平滑注意力模块,修正分类结果;另外,加入视频片段级语义标签预测模块,改善弱监督标签信息不充足问题;最后将三个模块共同训练以融合提升时序动作定位的精度。通过在THUMOS14和ActivityNet数据集上的实验,表明本文方法的性能指标明显优于目前现有方法。
Keyword :
语义结构信息 语义结构信息 弱监督 弱监督 动作定位 动作定位 注意力值 注意力值 伪标签 伪标签
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 孔德慧 , 许梦文 , 李敬华 et al. 一种视频语义结构信息辅助的弱监督时序动作定位方法 [C] //2021中国自动化大会——中国自动化学会60周年会庆暨纪念钱学森诞辰110周年 . 2021 . |
MLA | 孔德慧 et al. "一种视频语义结构信息辅助的弱监督时序动作定位方法" 2021中国自动化大会——中国自动化学会60周年会庆暨纪念钱学森诞辰110周年 . (2021) . |
APA | 孔德慧 , 许梦文 , 李敬华 , 王少帆 , 尹宝才 . 一种视频语义结构信息辅助的弱监督时序动作定位方法 2021中国自动化大会——中国自动化学会60周年会庆暨纪念钱学森诞辰110周年 . (2021) . |
Export to | NoteExpress RIS BibTex |
Abstract :
为了实现更为精确的视频目标跟踪,提出一种以时空上下文模型为基础的RGB-D序列目标跟踪算法.通过引入更新模板的深度信息,该模型精准地区分了输入序列的目标区域与背景区域,实现了深度权值和颜色权值的融合;基于目标序列的深度及目标动量计算,该模型有效地实现了尺度更新与遮挡处理.通过在RGB-D图像序列数据集上的详细实验评估,该时空上下文模型相对于其他先进的同类方法表现出更好的性能.因此,该方法实现了更为精确可靠的视频目标跟踪.
Keyword :
目标跟踪 目标跟踪 机器学习 机器学习 RGB-D RGB-D 目标动量 目标动量 计算机视觉 计算机视觉 时空上下文 时空上下文
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 孔德慧 , 荣子豪 , 贾思宇 et al. 基于时空上下文模型的RGB-D序列目标跟踪方法 [J]. | 北京工业大学学报 , 2021 , 47 (03) : 224-230 . |
MLA | 孔德慧 et al. "基于时空上下文模型的RGB-D序列目标跟踪方法" . | 北京工业大学学报 47 . 03 (2021) : 224-230 . |
APA | 孔德慧 , 荣子豪 , 贾思宇 , 王少帆 , 尹宝才 . 基于时空上下文模型的RGB-D序列目标跟踪方法 . | 北京工业大学学报 , 2021 , 47 (03) , 224-230 . |
Export to | NoteExpress RIS BibTex |
Abstract :
三维形状重建是计算机视觉、计算机图形学、模式识别和虚拟现实等领域的重要研究课题。现有三维重建方法通常存在两个瓶颈:(1)它们涉及多个人工设计阶段,导致累积误差,且难以自动学习三维形状的语义特征;(2)它们严重依赖图像内容和质量,以及精确校准的摄像机。因此,这些方法的重建精度难以提高。基于深度学习的三维重建方法通过利用深度网络自动学习低质量图像中的三维形状语义特征,克服了这两个瓶颈。然而,这些方法具有多种体系框架,但是至今未有文献对它们作深入分析和比较。本文对基于深度学习的三维重建方法进行全面综述。首先,基于不同深度学习模型框架,将基于深度学习的三维重建方法分为4类:递归神经网络、深自编码器、生...
Keyword :
生成对抗网络 生成对抗网络 循环神经网络 循环神经网络 三维重建 三维重建 深度学习模型 深度学习模型 深度自编码器 深度自编码器 卷积神经网络 卷积神经网络
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 刘彩霞 , 孔德慧 , 王少帆 et al. 深度三维重建:方法、数据和挑战(英文) [J]. | Frontiers of Information Technology & Electronic Engineering , 2021 , 22 (05) : 652-673 . |
MLA | 刘彩霞 et al. "深度三维重建:方法、数据和挑战(英文)" . | Frontiers of Information Technology & Electronic Engineering 22 . 05 (2021) : 652-673 . |
APA | 刘彩霞 , 孔德慧 , 王少帆 , 王志勇 , 李敬华 , 尹宝才 . 深度三维重建:方法、数据和挑战(英文) . | Frontiers of Information Technology & Electronic Engineering , 2021 , 22 (05) , 652-673 . |
Export to | NoteExpress RIS BibTex |
Abstract :
针对理工科课程在教学内容、方式上实施"润物细无声"式课程思政的难度,以计算机图形学为例,提出课程思政建设总体思路,在阐述具体课程思政建设过程及结果的基础上,凝练总体建设原则,给出一般化的理工科课程思政建设策略,为在理工科院校更广泛、更有效地开展课程思政建设提供思路。
Keyword :
计算机图形学 计算机图形学 课程思政 课程思政 科学方法论 科学方法论 理工科课程思政建设 理工科课程思政建设 内涵与外延 内涵与外延
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 孔德慧 , 李敬华 , 王立春 et al. 基于计算机图形学教学实践的理工科课程思政建设研究 [J]. | 计算机教育 , 2021 , PageCount-页数: 4 (09) : 15-18 . |
MLA | 孔德慧 et al. "基于计算机图形学教学实践的理工科课程思政建设研究" . | 计算机教育 PageCount-页数: 4 . 09 (2021) : 15-18 . |
APA | 孔德慧 , 李敬华 , 王立春 , 张勇 , 孙艳丰 . 基于计算机图形学教学实践的理工科课程思政建设研究 . | 计算机教育 , 2021 , PageCount-页数: 4 (09) , 15-18 . |
Export to | NoteExpress RIS BibTex |
Abstract :
3-D action recognition is referred to as the classification of action sequences which consist of 3-D skeleton joints. While many research works are devoted to 3-D action recognition, it mainly suffers from three problems: 1) highly complicated articulation; 2) a great amount of noise; and 3) low implementation efficiency. To tackle all these problems, we propose a real-time 3-D action-recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model. We first define the skeletonlet as a few combinations of joint offsets grouped in terms of the kinematic principle and then represent an action sequence using LAKS, which consists of a denoising phase and a locally aggregating phase. The denoising phase detects the noisy action data and adjusts it by replacing all the features within it with the features of the corresponding previous frame, while the locally aggregating phase sums the difference between an offset feature of the skeletonlet and its cluster center together over all the offset features of the sequence. Finally, the SHA model combines sparse representation with a hashing model, aiming at promoting the recognition accuracy while maintaining high efficiency. Experimental results on MSRAction3D, UTKinectAction3D, and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.
Keyword :
Joints Joints skeletonlet skeletonlet sparse representation sparse representation skeleton joints skeleton joints Solid modeling Solid modeling Feature extraction Feature extraction Computational modeling Computational modeling Kinematics Kinematics Action recognition Action recognition Real-time systems Real-time systems hashing hashing Analytical models Analytical models
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Sun, Bin , Wang, Shaofan , Kong, Dehui et al. Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model [J]. | IEEE TRANSACTIONS ON CYBERNETICS , 2021 , 52 (6) : 4837-4849 . |
MLA | Sun, Bin et al. "Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model" . | IEEE TRANSACTIONS ON CYBERNETICS 52 . 6 (2021) : 4837-4849 . |
APA | Sun, Bin , Wang, Shaofan , Kong, Dehui , Wang, Lichun , Yin, Baocai . Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model . | IEEE TRANSACTIONS ON CYBERNETICS , 2021 , 52 (6) , 4837-4849 . |
Export to | NoteExpress RIS BibTex |
Abstract :
基于时空上下文模型的RGB-D序列目标跟踪方法
Keyword :
目标跟踪 目标跟踪 时空上下文 时空上下文 计算机视觉 计算机视觉 RGB-D RGB-D 目标动量 目标动量 机器学习 机器学习
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | 孔德慧 , 荣子豪 , 贾思宇 et al. 基于时空上下文模型的RGB-D序列目标跟踪方法 [J]. | 孔德慧 , 2021 , 47 (3) : 224-230 . |
MLA | 孔德慧 et al. "基于时空上下文模型的RGB-D序列目标跟踪方法" . | 孔德慧 47 . 3 (2021) : 224-230 . |
APA | 孔德慧 , 荣子豪 , 贾思宇 , 王少帆 , 尹宝才 , 北京工业大学学报 . 基于时空上下文模型的RGB-D序列目标跟踪方法 . | 孔德慧 , 2021 , 47 (3) , 224-230 . |
Export to | NoteExpress RIS BibTex |
Abstract :
Recovering the geometry of an object from a single depth image is an interesting yet challenging problem. While the recently proposed learning based approaches have demonstrated promising performance, they tend to produce unfaithful and incomplete 3D shape. In this paper, we propose Latent Feature-Aware and Local Structure-Preserving Network (LALP-Net) for completing the full 3D shape from a single depth view of an object, which consists of a generator and a discriminator. In the generator, we introduce Latent Feature-Aware (LFA) to learn a latent representation from the encoded input for a decoder generating the accurate and complete 3D shape. LFA can be taken as a plug-and-play component to upgrade existing networks. In the discriminator, we combine a Local Structure Preservation (LSP) module regarding visible regions and a Global Structure Prediction (GSP) module regarding entire regions for faithful reconstruction. Experimental results on both synthetic and real-world datasets show that our LALP-Net outperforms the state-of-the-art methods by a large margin.
Keyword :
Latent shape representation Latent shape representation Depth view Depth view Local structure Local structure 3D completion 3D completion
Cite:
Copy from the list or Export to your reference management。
GB/T 7714 | Liu, Caixia , Kong, Dehui , Wang, Shaofan et al. Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View [C] . 2021 : 67-79 . |
MLA | Liu, Caixia et al. "Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View" . (2021) : 67-79 . |
APA | Liu, Caixia , Kong, Dehui , Wang, Shaofan , Li, Jinghua , Yin, Baocai . Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View . (2021) : 67-79 . |
Export to | NoteExpress RIS BibTex |
Export
Results: |
Selected to |
Format: |