• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:孔德慧

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 28 >
MMF-Net: A novel multi-feature and multi-level fusion network for 3D human pose estimation SCIE
期刊论文 | 2025 , 19 (1) | IET COMPUTER VISION
Abstract&Keyword Cite

Abstract :

Human pose estimation based on monocular video has always been the focus of research in the human computer interaction community, which suffers mainly from depth ambiguity and self-occlusion challenges. While the recently proposed learning-based approaches have demonstrated promising performance, they do not fully explore the complementarity of features. In this paper, the authors propose a novel multi-feature and multi-level fusion network (MMF-Net), which extracts and combines joint features, bone features and trajectory features at multiple levels to estimate 3D human pose. In MMF-Net, firstly, the bone length estimation module and the trajectory multi-level fusion module are used to extract the geometric size information of the human body and multi-level trajectory information of human motion, respectively. Then, the fusion attention-based combination (FABC) module is used to extract multi-level topological structure information of the human body, and effectively fuse topological structure information, geometric size information and trajectory information. Extensive experiments show that MMF-Net achieves competitive results on Human3.6M, HumanEva-I and MPI-INF-3DHP datasets.

Keyword :

image processing image processing pose estimation pose estimation computer vision computer vision image reconstruction image reconstruction

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Qianxing , Kong, Dehui , Li, Jinghua et al. MMF-Net: A novel multi-feature and multi-level fusion network for 3D human pose estimation [J]. | IET COMPUTER VISION , 2025 , 19 (1) .
MLA Li, Qianxing et al. "MMF-Net: A novel multi-feature and multi-level fusion network for 3D human pose estimation" . | IET COMPUTER VISION 19 . 1 (2025) .
APA Li, Qianxing , Kong, Dehui , Li, Jinghua , Yin, Baocai . MMF-Net: A novel multi-feature and multi-level fusion network for 3D human pose estimation . | IET COMPUTER VISION , 2025 , 19 (1) .
Export to NoteExpress RIS BibTex
3d human pose estimation based on conditional dual-branch diffusion SCIE
期刊论文 | 2025 , 31 (1) | MULTIMEDIA SYSTEMS
Abstract&Keyword Cite

Abstract :

Thanks to the development of 2D keypoint detectors, monocular 3D human pose estimation (HPE) via 2D-to-3D lifting approaches have achieved remarkable improvements. However, monocular 3D HPE is still a challenging problem due to the inherent depth ambiguities and occlusions. Recently, diffusion models have achieved great success in the field of image generation. Inspired by this, we transform 3D human pose estimation problem into a reverse diffusion process, and propose a dual-branch diffusion model so as to handle the indeterminacy and uncertainty of 3D pose and fully explore the global and local correlations between joints. Furthermore, we propose conditional dual-branch diffusion model to enhance the performance of 3D human pose estimation, in which the joint-level semantic information are regarded as the condition of the diffusion model, and integrated into the joint-level representations of 2D pose to enhance the expression of joints. The proposed method is verified on two widely used datasets and the experimental results have demonstrated the superiority.

Keyword :

Human pose estimation Human pose estimation Diffusion model Diffusion model Joint semantics Joint semantics Dual-branch Dual-branch

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Li, Jinghua , Bai, Zhuowei , Kong, Dehui et al. 3d human pose estimation based on conditional dual-branch diffusion [J]. | MULTIMEDIA SYSTEMS , 2025 , 31 (1) .
MLA Li, Jinghua et al. "3d human pose estimation based on conditional dual-branch diffusion" . | MULTIMEDIA SYSTEMS 31 . 1 (2025) .
APA Li, Jinghua , Bai, Zhuowei , Kong, Dehui , Chen, Dongpan , Li, Qianxing , Yin, Baocai . 3d human pose estimation based on conditional dual-branch diffusion . | MULTIMEDIA SYSTEMS , 2025 , 31 (1) .
Export to NoteExpress RIS BibTex
HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation SCIE
期刊论文 | 2022 , 487 , 243-256 | NEUROCOMPUTING
WoS CC Cited Count: 15
Abstract&Keyword Cite

Abstract :

3D pose estimation remains a challenging task since human poses exhibit high ambiguity and multigranularity. Traditional graph convolution networks (GCNs) accomplish the task by modeling all skeletons as an entire graph, and are unable to fuse combinable part-based features. By observing that human movements occur due to part of human body (i.e. related skeletons and body components, known as the poselet) and those poselets contribute to each movement in a hierarchical fashion, we propose a hierarchical poselet-guided graph convolutional network (HPGCN) for 3D pose estimation from 2D poses. HPGCN sets five primitives of human body as basic poselets, and constitutes high-level poselets according to the kinematic configuration of human body. Moreover, HPGCN forms a fundamental unit by using a diagonally dominant graph convolution layer and a non-local layer, which corporately capture the multi-granular feature of human poses from local to global perspective. Finally HPGCN designs a geometric constraint loss function with constraints on lengths and directions of bone vectors, which help produce reasonable pose regression. We verify the effectiveness of HPGCN on three public 3D human pose benchmarks. Experimental results show that HPGCN outperforms several state-of-the-art methods. (c) 2021 Elsevier B.V.

Keyword :

Graph convolutional network Graph convolutional network Hierarchical poselet Hierarchical poselet Geometric constraint Geometric constraint Diagonally dominant graph convolution Diagonally dominant graph convolution Pose estimation Pose estimation

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Wu, Yongpeng , Kong, Dehui , Wang, Shaofan et al. HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation [J]. | NEUROCOMPUTING , 2022 , 487 : 243-256 .
MLA Wu, Yongpeng et al. "HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation" . | NEUROCOMPUTING 487 (2022) : 243-256 .
APA Wu, Yongpeng , Kong, Dehui , Wang, Shaofan , Li, Jinghua , Yin, Baocai . HPGCN: Hierarchical poselet-guided graph convolutional network for 3D pose estimation . | NEUROCOMPUTING , 2022 , 487 , 243-256 .
Export to NoteExpress RIS BibTex
一种视频语义结构信息辅助的弱监督时序动作定位方法
会议论文 | 2022 | 2021中国自动化大会——中国自动化学会60周年会庆暨纪念钱学森诞辰110周年
Abstract&Keyword Cite

Abstract :

弱监督时序动作定位任务的目标是在只有视频级标签的情况下,对未分割的视频中的动作进行分类和时序上的定位。目前基于神经网络模型的方法,大多训练分类器以预测视频片段级的类别分数,再融合其为视频级的类别分数。这些方法只关注视频的视觉特征,却忽视了视频语义结构信息。为进一步提升视频动作定位的质量,本文提出了一种视频语义结构信息辅助的弱监督时序动作定位方法。该方法首先以分类模块作为基础模型,然后基于视频在时序结构上的稀疏性和语义连续性等辅助信息设计一种平滑注意力模块,修正分类结果;另外,加入视频片段级语义标签预测模块,改善弱监督标签信息不充足问题;最后将三个模块共同训练以融合提升时序动作定位的精度。通过在THUMOS14和ActivityNet数据集上的实验,表明本文方法的性能指标明显优于目前现有方法。

Keyword :

语义结构信息 语义结构信息 伪标签 伪标签 注意力值 注意力值 动作定位 动作定位 弱监督 弱监督

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 孔德慧 , 许梦文 , 李敬华 et al. 一种视频语义结构信息辅助的弱监督时序动作定位方法 [C] //2021中国自动化大会论文集 . 2022 .
MLA 孔德慧 et al. "一种视频语义结构信息辅助的弱监督时序动作定位方法" 2021中国自动化大会论文集 . (2022) .
APA 孔德慧 , 许梦文 , 李敬华 , 王少帆 , 尹宝才 . 一种视频语义结构信息辅助的弱监督时序动作定位方法 2021中国自动化大会论文集 . (2022) .
Export to NoteExpress RIS BibTex
Joint Transferable Dictionary Learning and View Adaptation for Multi-view Human Action Recognition SCIE
期刊论文 | 2021 , 15 (2) | ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA
WoS CC Cited Count: 7
Abstract&Keyword Cite

Abstract :

Multi-view human action recognition remains a challenging problem due to large view changes. In this article, we propose a transfer learning-based framework called transferable dictionary learning and view adaptation (TDVA) model for multi-view human action recognition. In the transferable dictionary learning phase, TDVA learns a set of view-specific transferable dictionaries enabling the same actions from different views to share the same sparse representations, which can transfer features of actions from different views to an intermediate domain. In the view adaptation phase, TDVA comprehensively analyzes global, local, and individual characteristics of samples, and jointly learns balanced distribution adaptation, locality preservation, and discrimination preservation, aiming at transferring sparse features of actions of different views from the intermediate domain to a common domain. In other words, TDVA progressively bridges the distribution gap among actions from various views by these two phases. Experimental results on IXMAS, ACT4(2), and NUCLA action datasets demonstrate that TDVA outperforms state-of-the-art methods.

Keyword :

sparse representation sparse representation Action recognition Action recognition transfer learning transfer learning multi-view multi-view

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Bin , Kong, Dehui , Wang, Shaofan et al. Joint Transferable Dictionary Learning and View Adaptation for Multi-view Human Action Recognition [J]. | ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA , 2021 , 15 (2) .
MLA Sun, Bin et al. "Joint Transferable Dictionary Learning and View Adaptation for Multi-view Human Action Recognition" . | ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA 15 . 2 (2021) .
APA Sun, Bin , Kong, Dehui , Wang, Shaofan , Wang, Lichun , Yin, Baocai . Joint Transferable Dictionary Learning and View Adaptation for Multi-view Human Action Recognition . | ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA , 2021 , 15 (2) .
Export to NoteExpress RIS BibTex
A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection SCIE
期刊论文 | 2021 , 11 (4) | APPLIED SCIENCES-BASEL
WoS CC Cited Count: 1
Abstract&Keyword Cite

Abstract :

Featured Application The vehicle detection algorithm proposed in this work could be used in autonomous driving systems to understand the environment, or could be applied in surveillance systems to extract useful transportation information through a camera. Vehicle detection as a special case of object detection has practical meaning but faces challenges, such as the difficulty of detecting vehicles of various orientations, the serious influence from occlusion, the clutter of background, etc. In addition, existing effective approaches, like deep-learning-based ones, demand a large amount of training time and data, which causes trouble for their application. In this work, we propose a dictionary-learning-based vehicle detection approach which explicitly addresses these problems. Specifically, an ensemble of sparse-and-dense dictionaries (ESDD) are learned through supervised low-rank decomposition; each pair of sparse-and-dense dictionaries (SDD) in the ensemble is trained to represent either a subcategory of vehicle (corresponding to certain orientation range or occlusion level) or a subcategory of background (corresponding to a cluster of background patterns) and only gives good reconstructions to samples of the corresponding subcategory, making the ESDD capable of classifying vehicles from background even though they exhibit various appearances. We further organize ESDD into a two-level cascade (CESDD) to perform coarse-to-fine two-stage classification for better performance and computation reduction. The CESDD is then coupled with a downstream AdaBoost process to generate robust classifications. The proposed CESDD model is used as a window classifier in a sliding-window scan process over image pyramids to produce multi-scale detections, and an adapted mean-shift-like non-maximum suppression process is adopted to remove duplicate detections. Our CESDD vehicle detection approach is evaluated on KITTI dataset and compared with other strong counterparts; the experimental results exhibit the effectiveness of CESDD-based classification and detection, and the training of CESDD only demands small amount of time and data.

Keyword :

ensemble learning ensemble learning object detection object detection dictionary learning dictionary learning vehicle detection vehicle detection

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Rong, Zihao , Wang, Shaofan , Kong, Dehui et al. A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection [J]. | APPLIED SCIENCES-BASEL , 2021 , 11 (4) .
MLA Rong, Zihao et al. "A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection" . | APPLIED SCIENCES-BASEL 11 . 4 (2021) .
APA Rong, Zihao , Wang, Shaofan , Kong, Dehui , Yin, Baocai . A Cascaded Ensemble of Sparse-and-Dense Dictionaries for Vehicle Detection . | APPLIED SCIENCES-BASEL , 2021 , 11 (4) .
Export to NoteExpress RIS BibTex
基于时空上下文模型的RGB-D序列目标跟踪方法 CSCD
期刊论文 | 2021 , 47 (03) , 224-230 | 北京工业大学学报
Abstract&Keyword Cite

Abstract :

为了实现更为精确的视频目标跟踪,提出一种以时空上下文模型为基础的RGB-D序列目标跟踪算法.通过引入更新模板的深度信息,该模型精准地区分了输入序列的目标区域与背景区域,实现了深度权值和颜色权值的融合;基于目标序列的深度及目标动量计算,该模型有效地实现了尺度更新与遮挡处理.通过在RGB-D图像序列数据集上的详细实验评估,该时空上下文模型相对于其他先进的同类方法表现出更好的性能.因此,该方法实现了更为精确可靠的视频目标跟踪.

Keyword :

目标跟踪 目标跟踪 机器学习 机器学习 RGB-D RGB-D 目标动量 目标动量 计算机视觉 计算机视觉 时空上下文 时空上下文

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 孔德慧 , 荣子豪 , 贾思宇 et al. 基于时空上下文模型的RGB-D序列目标跟踪方法 [J]. | 北京工业大学学报 , 2021 , 47 (03) : 224-230 .
MLA 孔德慧 et al. "基于时空上下文模型的RGB-D序列目标跟踪方法" . | 北京工业大学学报 47 . 03 (2021) : 224-230 .
APA 孔德慧 , 荣子豪 , 贾思宇 , 王少帆 , 尹宝才 . 基于时空上下文模型的RGB-D序列目标跟踪方法 . | 北京工业大学学报 , 2021 , 47 (03) , 224-230 .
Export to NoteExpress RIS BibTex
基于时空上下文模型的RGB-D序列目标跟踪方法 CQVIP
期刊论文 | 2021 , 47 (3) , 224-230 | 孔德慧
Abstract&Keyword Cite

Abstract :

基于时空上下文模型的RGB-D序列目标跟踪方法

Keyword :

目标跟踪 目标跟踪 时空上下文 时空上下文 计算机视觉 计算机视觉 RGB-D RGB-D 目标动量 目标动量 机器学习 机器学习

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 孔德慧 , 荣子豪 , 贾思宇 et al. 基于时空上下文模型的RGB-D序列目标跟踪方法 [J]. | 孔德慧 , 2021 , 47 (3) : 224-230 .
MLA 孔德慧 et al. "基于时空上下文模型的RGB-D序列目标跟踪方法" . | 孔德慧 47 . 3 (2021) : 224-230 .
APA 孔德慧 , 荣子豪 , 贾思宇 , 王少帆 , 尹宝才 , 北京工业大学学报 . 基于时空上下文模型的RGB-D序列目标跟踪方法 . | 孔德慧 , 2021 , 47 (3) , 224-230 .
Export to NoteExpress RIS BibTex
Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View CPCI-S
会议论文 | 2021 , 12892 , 67-79 | 30th International Conference on Artificial Neural Networks (ICANN)
WoS CC Cited Count: 2
Abstract&Keyword Cite

Abstract :

Recovering the geometry of an object from a single depth image is an interesting yet challenging problem. While the recently proposed learning based approaches have demonstrated promising performance, they tend to produce unfaithful and incomplete 3D shape. In this paper, we propose Latent Feature-Aware and Local Structure-Preserving Network (LALP-Net) for completing the full 3D shape from a single depth view of an object, which consists of a generator and a discriminator. In the generator, we introduce Latent Feature-Aware (LFA) to learn a latent representation from the encoded input for a decoder generating the accurate and complete 3D shape. LFA can be taken as a plug-and-play component to upgrade existing networks. In the discriminator, we combine a Local Structure Preservation (LSP) module regarding visible regions and a Global Structure Prediction (GSP) module regarding entire regions for faithful reconstruction. Experimental results on both synthetic and real-world datasets show that our LALP-Net outperforms the state-of-the-art methods by a large margin.

Keyword :

Latent shape representation Latent shape representation Depth view Depth view Local structure Local structure 3D completion 3D completion

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Caixia , Kong, Dehui , Wang, Shaofan et al. Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View [C] . 2021 : 67-79 .
MLA Liu, Caixia et al. "Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View" . (2021) : 67-79 .
APA Liu, Caixia , Kong, Dehui , Wang, Shaofan , Li, Jinghua , Yin, Baocai . Latent Feature-Aware and Local Structure-Preserving Network for 3D Completion from a Single Depth View . (2021) : 67-79 .
Export to NoteExpress RIS BibTex
Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model SCIE
期刊论文 | 2021 , 52 (6) , 4837-4849 | IEEE TRANSACTIONS ON CYBERNETICS
WoS CC Cited Count: 6
Abstract&Keyword Cite

Abstract :

3-D action recognition is referred to as the classification of action sequences which consist of 3-D skeleton joints. While many research works are devoted to 3-D action recognition, it mainly suffers from three problems: 1) highly complicated articulation; 2) a great amount of noise; and 3) low implementation efficiency. To tackle all these problems, we propose a real-time 3-D action-recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model. We first define the skeletonlet as a few combinations of joint offsets grouped in terms of the kinematic principle and then represent an action sequence using LAKS, which consists of a denoising phase and a locally aggregating phase. The denoising phase detects the noisy action data and adjusts it by replacing all the features within it with the features of the corresponding previous frame, while the locally aggregating phase sums the difference between an offset feature of the skeletonlet and its cluster center together over all the offset features of the sequence. Finally, the SHA model combines sparse representation with a hashing model, aiming at promoting the recognition accuracy while maintaining high efficiency. Experimental results on MSRAction3D, UTKinectAction3D, and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.

Keyword :

Joints Joints skeletonlet skeletonlet sparse representation sparse representation skeleton joints skeleton joints Solid modeling Solid modeling Feature extraction Feature extraction Computational modeling Computational modeling Kinematics Kinematics Action recognition Action recognition Real-time systems Real-time systems hashing hashing Analytical models Analytical models

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Sun, Bin , Wang, Shaofan , Kong, Dehui et al. Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model [J]. | IEEE TRANSACTIONS ON CYBERNETICS , 2021 , 52 (6) : 4837-4849 .
MLA Sun, Bin et al. "Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model" . | IEEE TRANSACTIONS ON CYBERNETICS 52 . 6 (2021) : 4837-4849 .
APA Sun, Bin , Wang, Shaofan , Kong, Dehui , Wang, Lichun , Yin, Baocai . Real-Time Human Action Recognition Using Locally Aggregated Kinematic-Guided Skeletonlet and Supervised Hashing-by-Analysis Model . | IEEE TRANSACTIONS ON CYBERNETICS , 2021 , 52 (6) , 4837-4849 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 28 >

Export

Results:

Selected

to

Format:
Online/Total:373/9264944
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.