• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索
High Impact Results & Cited Count Trend for Year Keyword Cloud and Partner Relationship

Query:

学者姓名:杨建武

Refining:

Source

Submit Unfold

Co-Author

Submit Unfold

Language

Submit

Clean All

Sort by:
Default
  • Default
  • Title
  • Year
  • WOS Cited Count
  • Impact factor
  • Ascending
  • Descending
< Page ,Total 12 >
A method for modeling and analyzing the rotor dynamics of a locomotive turbocharger SCIE
期刊论文 | 2016 , 84 (1) , 287-293 | NONLINEAR DYNAMICS
WoS CC Cited Count: 8
Abstract&Keyword Cite

Abstract :

The rotor of the locomotive turbocharger is prone to malfunction of the turbocharger, and it is also the most important part of the turbocharger. The reasonable establishment of rotor dynamics model is very important in the study. It determines the accuracy of analysis. The influence of the shaft quality on the turbine and impeller was not considered in the process of analyzing the dynamic model in the passed research. But the quality of locomotive turbocharger rotor shaft is relatively large, it cannot be ignored because it will have a large bending moment in the model simplified. So the rotor dynamic equation was deduced in the case of considered the quality of the rotor axis. The rotor of the turbocharger rotor was simplified firstly, the various parts of the simplified rotor were analyzed, and the dynamic model of the rotor was established. And the dynamic model was verified by the hammer experiment. The factors considered in the dynamic model were more comprehensive, so the model would be more practical for the future research.

Keyword :

Moment Moment Modal analysis Modal analysis Locomotive turbocharger Locomotive turbocharger Rotor dynamics Rotor dynamics

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, Jianwu , Gao, Yaju , Liu, Zhifeng et al. A method for modeling and analyzing the rotor dynamics of a locomotive turbocharger [J]. | NONLINEAR DYNAMICS , 2016 , 84 (1) : 287-293 .
MLA Yang, Jianwu et al. "A method for modeling and analyzing the rotor dynamics of a locomotive turbocharger" . | NONLINEAR DYNAMICS 84 . 1 (2016) : 287-293 .
APA Yang, Jianwu , Gao, Yaju , Liu, Zhifeng , Zhao, Chengbin , Kang, Taiti , Gu, Lichao et al. A method for modeling and analyzing the rotor dynamics of a locomotive turbocharger . | NONLINEAR DYNAMICS , 2016 , 84 (1) , 287-293 .
Export to NoteExpress RIS BibTex
Fault Recognition of Bearing Based on the Affinity Fuzzy Support Vector Machine CPCI-S
会议论文 | 2015 , 439-442 | 3rd Asian Pacific Conference on Mechatronics and Control Engineering (APCMCE)
Abstract&Keyword Cite

Abstract :

Rolling bearing is not only one of the most common components in machinery and equipment, but also prone to fault. So it is very important for the recognition of bearing faults. Aiming at identifying the common faults of bearing, for the problem about isolated points or noises mixed in vibration signal, in this paper, a classification model is proposed, which is based on the affinity fuzzy support vector machine. And compared with the traditional support vector machine (SVM), the introduced model of fuzzy support vector machine (FSVM) works better.

Keyword :

Isolated points or noises Isolated points or noises Rolling bearing Rolling bearing Affinity Affinity FSVM FSVM Fault Fault Recognition Recognition

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Gao, Yaju , Yang, Jianwu , Gu, Lichao et al. Fault Recognition of Bearing Based on the Affinity Fuzzy Support Vector Machine [C] . 2015 : 439-442 .
MLA Gao, Yaju et al. "Fault Recognition of Bearing Based on the Affinity Fuzzy Support Vector Machine" . (2015) : 439-442 .
APA Gao, Yaju , Yang, Jianwu , Gu, Lichao , Liu, Zhifeng . Fault Recognition of Bearing Based on the Affinity Fuzzy Support Vector Machine . (2015) : 439-442 .
Export to NoteExpress RIS BibTex
一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法 incoPat
专利 | 2015-01-13 | CN201510016333.8
Abstract&Keyword Cite

Abstract :

一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法,滚动轴承作为机械设备中的关键部件,其运行状态的优劣往往影响到整台设备的运行性能。本发明提出了基于GM(1,1) SVM的滚动轴承故障诊断及预测方法。提取滚动轴承各类故障和正常状态下的振动信号时域及频域特征值,选取重要特征参数建立预测模型——灰色模型,进行特征值预测;使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与所训练的支持向量机实现故障预测的目的。

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 高亚举 , 杨建武 , 亢太体 et al. 一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法 : CN201510016333.8[P]. | 2015-01-13 .
MLA 高亚举 et al. "一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法" : CN201510016333.8. | 2015-01-13 .
APA 高亚举 , 杨建武 , 亢太体 , 刘志峰 , 王建华 . 一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法 : CN201510016333.8. | 2015-01-13 .
Export to NoteExpress RIS BibTex
Five-phase s-curve control method based on particle swarm optimization Scopus CSCD PKU
期刊论文 | 2015 , 41 (5) , 641-648 | Journal of Beijing University of Technology
SCOPUS Cited Count: 4
Abstract&Keyword Cite

Abstract :

To solve the problem of the torsional vibration that the startup of synchronous belt transmission printers, a mathematical model of the belt system was established, the main cause of torsional vibration through the analysis of model was found, and the phenomenon of torsional vibration through the synchronous belt transmission test platform that has been established was studied. To suppress the system torsional vibration, five-phase S-curve acceleration and deceleration method was used to plan input signals in the motor starting, and the difficult problem of S-curve parameters selection was solved by using of particle swarm optimization algorithm. The feasibility of the algorithm were verified through the simulation test and the test platform. Results show that the optimized S-curve avoids resonance frequency of the input signal that is close to resonant frequency, and losses the dynamic performance of synchronous belt system, meanwhile suppress torsional vibration significantly. ©, 2015, Beijing University of Technology. All right reserved.

Keyword :

Five-phase S-curve; Particle swarm optimization; Synchronous belt transmission printers Five-phase S-curve; Particle swarm optimization; Synchronous belt transmission printers

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Liu, Z.-F. , Zhang, S. , Cai, L.-G. et al. Five-phase s-curve control method based on particle swarm optimization [J]. | Journal of Beijing University of Technology , 2015 , 41 (5) : 641-648 .
MLA Liu, Z.-F. et al. "Five-phase s-curve control method based on particle swarm optimization" . | Journal of Beijing University of Technology 41 . 5 (2015) : 641-648 .
APA Liu, Z.-F. , Zhang, S. , Cai, L.-G. , Yang, J.-W. , Xu, B. , Xu, P. . Five-phase s-curve control method based on particle swarm optimization . | Journal of Beijing University of Technology , 2015 , 41 (5) , 641-648 .
Export to NoteExpress RIS BibTex
无线动态卡紧力测试仪设计与应用
期刊论文 | 2015 , 37 (01) , 111-114 | 电气自动化
CNKI Cited Count: 1
Abstract&Keyword Cite

Abstract :

卡紧力与转速函数关系检测是高速车削加工中不可缺少重要环节,介绍了通过卡紧力和转速函数关系检测高速卡盘性能的方法。设计出了一种无线动态卡紧力测试仪,以微型单片机为控制核心,采用无线收发模块,能够实时将动态测量结果传送到上位机,直接获得函数曲线。采用了特殊的设计方法,实现了长时间在线测量,精度高,反应灵敏。阐述了测量原理,硬件和软件的结构。通过实验证明,测试仪使用方便,精度达到设计指标要求。

Keyword :

无线传送 无线传送 卡紧力测量 卡紧力测量 单片机 单片机 转速测量 转速测量 机床卡盘 机床卡盘

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 张国斌 , 陈晨 , 杨建武 et al. 无线动态卡紧力测试仪设计与应用 [J]. | 电气自动化 , 2015 , 37 (01) : 111-114 .
MLA 张国斌 et al. "无线动态卡紧力测试仪设计与应用" . | 电气自动化 37 . 01 (2015) : 111-114 .
APA 张国斌 , 陈晨 , 杨建武 , 张跃明 . 无线动态卡紧力测试仪设计与应用 . | 电气自动化 , 2015 , 37 (01) , 111-114 .
Export to NoteExpress RIS BibTex
基于等距模型的弧面凸轮测量方法 CSCD PKU
期刊论文 | 2015 , 41 (01) , 7-12 | 北京工业大学学报
CNKI Cited Count: 1
Abstract&Keyword Cite

Abstract :

弧面凸轮的廓面为空间不可展曲面,难以找到一种准确度高的快速测量方法.通过三坐标测量机搭配转台组成测量装置,对弧面凸轮等距模型的特征线进行测量,提出一种基于等距模型的弧面凸轮测量方法.首先,分析了等距模型的测量原理,避免了半径补偿;其次,提出了特征线的测量方法,评定等距模型的线轮廓度误差,讨论其对凸轮分度箱及换刀机械手的影响;最后,通过实验验证了测量方法的可行性,并提出了本测量方法的改进意见,可更好地实现弧面凸轮机构设计、加工、测量一体化.

Keyword :

线轮廓度误差 线轮廓度误差 弧面凸轮 弧面凸轮 等距模型 等距模型 精密测量 精密测量

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 杨建武 , 孙树文 , 曹思奇 . 基于等距模型的弧面凸轮测量方法 [J]. | 北京工业大学学报 , 2015 , 41 (01) : 7-12 .
MLA 杨建武 et al. "基于等距模型的弧面凸轮测量方法" . | 北京工业大学学报 41 . 01 (2015) : 7-12 .
APA 杨建武 , 孙树文 , 曹思奇 . 基于等距模型的弧面凸轮测量方法 . | 北京工业大学学报 , 2015 , 41 (01) , 7-12 .
Export to NoteExpress RIS BibTex
基于粒子群优化五阶段S曲线加减速控制算法 CSCD PKU
期刊论文 | 2015 , 41 (05) , 641-648 | 北京工业大学学报
CNKI Cited Count: 16
Abstract&Keyword Cite

Abstract :

针对同步带传动印刷机启动中的扭振问题,建立了传动带系统的数学模型,通过分析模型找出引起扭振的主要原因,且搭建同步带传动试验平台对扭振现象进行研究.采用五阶段S曲线加减速方法对电机启动输入信号进行规划来抑制系统扭振,并提出运用粒子群优化算法,解决了规划五阶段S曲线参数选取困难的问题.通过仿真试验和试验平台验证可行性,证明了优化后的五阶段S曲线输入信号避开了谐振频率,在较小的牺牲同步带系统动态性能的同时大幅度抑制扭振.

Keyword :

五阶段S曲线 五阶段S曲线 同步带传动印刷机 同步带传动印刷机 粒子群算法 粒子群算法

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 刘志峰 , 张森 , 蔡力钢 et al. 基于粒子群优化五阶段S曲线加减速控制算法 [J]. | 北京工业大学学报 , 2015 , 41 (05) : 641-648 .
MLA 刘志峰 et al. "基于粒子群优化五阶段S曲线加减速控制算法" . | 北京工业大学学报 41 . 05 (2015) : 641-648 .
APA 刘志峰 , 张森 , 蔡力钢 , 杨建武 , 许博 , 徐鹏 . 基于粒子群优化五阶段S曲线加减速控制算法 . | 北京工业大学学报 , 2015 , 41 (05) , 641-648 .
Export to NoteExpress RIS BibTex
基于改进FSVM的旋转机械故障诊断算法 CSCD PKU
期刊论文 | 2015 , 41 (11) , 1711-1717 | 北京工业大学学报
CNKI Cited Count: 4
Abstract&Keyword Cite

Abstract :

针对旋转机械故障诊断中采集到的振动信号存在强烈噪声及野值干扰,故障特征提取后,利用传统的支持向量机(support vector machine,SVM)进行模式识别会造成最优超平面的模糊性,影响分类效果,引入模糊C均值聚类算法(fuzzy C-means,FCM)与支持向量机结合进行故障诊断.FCM用来求解样本模糊隶属度,但其迭代求解聚类中心及样本模糊隶属度矩阵时容易陷入局部最优,而粒子群算法(particle swarm optimization,PSO)具有全局优化搜索的优点.基于此,提出了基于改进模糊支持向量机(fuzzy support vector machine,FSVM)的旋转...

Keyword :

故障诊断 故障诊断 旋转机械 旋转机械 模糊隶属度 模糊隶属度 模糊支持向量机 模糊支持向量机

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 杨建武 , 高亚举 , 谷力超 et al. 基于改进FSVM的旋转机械故障诊断算法 [J]. | 北京工业大学学报 , 2015 , 41 (11) : 1711-1717 .
MLA 杨建武 et al. "基于改进FSVM的旋转机械故障诊断算法" . | 北京工业大学学报 41 . 11 (2015) : 1711-1717 .
APA 杨建武 , 高亚举 , 谷力超 , 刘志峰 , 亢太体 , 赵成斌 . 基于改进FSVM的旋转机械故障诊断算法 . | 北京工业大学学报 , 2015 , 41 (11) , 1711-1717 .
Export to NoteExpress RIS BibTex
Fault diagnosis algorithm of rotating machinery based on the improved FSVM Scopus CSCD PKU
期刊论文 | 2015 , 41 (11) , 1711-1717 | Journal of Beijing University of Technology
Abstract&Keyword Cite

Abstract :

In fault diagnosis of rotating machinery, the strong noise and outliers interference are usually contained in the vibration signals. After fault feature extraction, the method of traditional support vector machine (SVM) for the pattern recognition causes the fuzzy of optimal hyperplane and affects the classification results. So a fuzzy C-means (FCM) clustering algorithm was introduced in this paper. FCM was used to solve the problem of fuzzy membership. However, the FCM had its own defects. The clustering result was sensitive to the initial center, and often cannot achieve the result of the global optimal. Improved by particle swarm optimization (PSO) which has advantages of global optimization search, the FCM achieved better fuzzy memberships for each sample. So, the fault diagnosis algorithm of rotating machinery based on the improved fuzzy support vector machine (FSVM) was proposed. First, fault features were extracted by using the empirical mode decomposition (EMD). Second, the problem of fuzzy membership was solved by using FCM which was optimized by PSO. At last the fuzzy memberships were put into SVM, the improved FSVM was founded and fault recognition was realized. Results of the experiment show that the improved FSVM has better anti-noise performance and the classification effect is better than that of the traditional FSVM algorithm. © 2015, Beijing University of Technology. All right reserved.

Keyword :

Fault diagnosis; Fuzzy membership; Fuzzy support vector machine; Rotating machinery Fault diagnosis; Fuzzy membership; Fuzzy support vector machine; Rotating machinery

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, J.-W. , Gao, Y.-J. , Gu, L.-C. et al. Fault diagnosis algorithm of rotating machinery based on the improved FSVM [J]. | Journal of Beijing University of Technology , 2015 , 41 (11) : 1711-1717 .
MLA Yang, J.-W. et al. "Fault diagnosis algorithm of rotating machinery based on the improved FSVM" . | Journal of Beijing University of Technology 41 . 11 (2015) : 1711-1717 .
APA Yang, J.-W. , Gao, Y.-J. , Gu, L.-C. , Liu, Z.-F. , Kang, T.-T. , Zhao, C.-B. . Fault diagnosis algorithm of rotating machinery based on the improved FSVM . | Journal of Beijing University of Technology , 2015 , 41 (11) , 1711-1717 .
Export to NoteExpress RIS BibTex
Assessment method of machining error of globoidal cam based on equidistant model Scopus CSCD PKU
期刊论文 | 2015 , 41 (1) , 7-12 | Journal of Beijing University of Technology
SCOPUS Cited Count: 1
Abstract&Keyword Cite

Abstract :

Because of the complicacy of working profile of a globoidal cam, there is not a fast measurement method with high accuracy. A method of measuring the characteristic line on the equidistant model of the globoidal cam based on the three-coordinate measuring machine (CMM) and the turntable system is proposed. The measuring theory of the equidistant model without radius compensation is first analyzed. The line profile error of equidistant model is then calculated and the influence on cam gearbox and automatic tool changer (ATC) is discussed. Test results show that cam measurements method is feasible, providing a foundation for integration of globoidal cam's design, manufacture and measure. ©, 2015, Beijing University of Technology. All right reserved.

Keyword :

Equidistant model; Globoidal cam; Line profile error; Precision measurement Equidistant model; Globoidal cam; Line profile error; Precision measurement

Cite:

Copy from the list or Export to your reference management。

GB/T 7714 Yang, J.-W. , Sun, S.-W. , Cao, S.-Q. . Assessment method of machining error of globoidal cam based on equidistant model [J]. | Journal of Beijing University of Technology , 2015 , 41 (1) : 7-12 .
MLA Yang, J.-W. et al. "Assessment method of machining error of globoidal cam based on equidistant model" . | Journal of Beijing University of Technology 41 . 1 (2015) : 7-12 .
APA Yang, J.-W. , Sun, S.-W. , Cao, S.-Q. . Assessment method of machining error of globoidal cam based on equidistant model . | Journal of Beijing University of Technology , 2015 , 41 (1) , 7-12 .
Export to NoteExpress RIS BibTex
10| 20| 50 per page
< Page ,Total 12 >

Export

Results:

Selected

to

Format:
Online/Total:877/4742567
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.