Indexed by:
Abstract:
针对交通需求特征识别和需求预测问题,构建改进的LDA(Latent Dirichlet Allocation)城市区域内出行需求识别与预测组合模型,快速识别城市区域内出行需求特征并对需求做出预测.构建城市交通小区尺度内的空间和时间维度下的主要出行需求特征分布挖掘辨识方法,以及数据集在不同时间尺度下时间维度出行特征构建及预测方法.利用北京市三环内网约车出行订单数据,验证模型的有效性和准确性.结果表明,模型能够对不同时间窗口下的区域出行需求特征进行辨识和预测,取得较好的结果.
Keyword:
Reprint Author's Address:
Email:
Source :
交通运输系统工程与信息
Year: 2020
Issue: 03
Volume: 20
Page: 89-94
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: