Indexed by:
Abstract:
In a previous study, the authors found that a bio-electrochemical system could increase the antibiotic removal efficiency by approximately 60%. Researchers desired to examine how the microbial community changed. Thus, Illumina high-throughput sequencing was used to explore the community structures in the bio-electrochemical system and a conventional sequencing batch biofilm reactor. Through establishing operational taxonomic units, rank-abundance distribution curves, Venn diagrams, bacterial community structures, and heatmaps, the result showed that the microbial richness and diversity were reduced in the bio-electrochemical system and that Xanthomonadaceae was dominant species. In addition, copies of three types of beta-lactam antibiotic resistance genes were detected, and the bio-electrochemical system showed the smallest number. Overall, this research implied that Xanthomonadaceae plays a role in removing cefuroxime and that the bio-electrochemical system has the potential to remove organisms' antibiotic resistance genes. (C) 2016 Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Source :
CHEMICAL ENGINEERING JOURNAL
ISSN: 1385-8947
Year: 2016
Volume: 303
Page: 137-144
1 5 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:166
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 65
SCOPUS Cited Count: 67
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: