Indexed by:
Abstract:
为提高多接入边缘计算(MEC)任务卸载效率,提出了一个任务卸载和异构资源调度的联合优化模型.考虑异构的通信资源和计算资源,联合最小化用户的设备能耗、任务执行时延和付费,并利用深度强化学习(DRL)算法对该模型求最优的任务卸载算法.仿真结果表明,该优化算法比银行家算法的设备能耗、时延和付费的综合指标提升了27. 6%.
Keyword:
Reprint Author's Address:
Email:
Source :
北京邮电大学学报
Year: 2019
Issue: 06
Volume: 42
Page: 64-69,104
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: