Abstract:
无线传感网络(Wireless sensor network,WSN)受电池能量有限和计算能力不足的约束,使得电池续航能力成为其广泛部署的瓶颈.本文利用无线电能传输(Wireless power transmission,WPT)和多接入边缘计算(Multi-access edge computing,MEC)技术,在传感器节点能耗受限的情况下,通过联合优化节点卸载决策、无线供电时长和带宽资源分配,最大限度地降低了传感器节点的任务平均完成时延.本文将优化问题建模成混合整数规划问题,并且为了适应复杂动态的信道环境,提出了一种基于柔性动作评价(Soft actor critic,SAC)的时延最小化深度强化学习算法(Deep reinforcement learning delay minimization,DrlDM),将原始优化问题建模成马尔可夫决策过程(Markov decision process,MDP).仿真结果表明,与3种基线实验相比,本文提出的DrlDM算法平均延迟降低62.11%,显著缩短了节点的任务平均完成时间.
Keyword:
Reprint Author's Address:
Email:
Source :
数据采集与处理
ISSN: 1004-9037
Year: 2025
Issue: 1
Volume: 40
Page: 163-175
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: