• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Ge, Yijing (Ge, Yijing.) | Sun, Yuying (Sun, Yuying.) | Wang, Wei (Wang, Wei.) (Scholars:王伟) | Zhu, Jiahe (Zhu, Jiahe.) | Li, Lintao (Li, Lintao.) | Liu, Jingdong (Liu, Jingdong.)

Indexed by:

Scopus SCIE

Abstract:

To improve the defrosting accuracy of air source heat pumps (ASHPs), this paper proposes a novel defrosting control method by applying tube encircled photoelectric sensors (TEPSs). A field test was conducted for two heating seasons in Beijing, China, to verify the feasibility and practicality of the novel TEPS method. The test results revealed that irrespective of the environmental conditions, the TEPS method can initiate defrosting in similar situations: most of the heat exchanger surface had been covered by frost; the compressor suction temperature decreased by similar to 9 degrees C; the compressor discharge temperature increased by similar to 16 degrees C; and the heating capacity decreased by similar to 30%. Furthermore, the TEPS method was verified to make more accurate and more reasonable defrosting decisions than the traditional T-T method under both frosting and non-frosting conditions. The results indicate that the TEPS method is a competitive defrosting control method that can be used for ASHPs. (C) 2015 Elsevier Ltd and IIR. All rights reserved.

Keyword:

Air-source heat pump TEPS Defrosting control Field test

Author Community:

  • [ 1 ] [Ge, Yijing]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Yuying]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Wei]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Jiahe]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Lintao]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Jingdong]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 王伟

    [Wang, Wei]Beijing Univ Technol, Coll Architecture & Civil Engn, Dept Bldg Environm & Facil Engn, 100 Pingleyuan Rd, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID

ISSN: 0140-7007

Year: 2016

Volume: 66

Page: 133-144

3 . 9 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:166

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 57

SCOPUS Cited Count: 61

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:561/10508763
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.