Indexed by:
Abstract:
番茄目标的准确提取是番茄采摘的基础,目前番茄目标提取方法都有一定的局限性,难以满足采摘需求。该研究在传统Niblack算法的基础上,结合图像全局灰度变化的估计信息与局部区域信息之间的关联性,提出了一种基于Niblack自适应修正系数的温室成熟番茄目标提取新方法。首先对R-G番茄灰度图像,采用基于自适应修正系数选取的Niblack算法进行阈值分割,从理论意义上确定修正系数的选取原则,归一化局部标准差,实现修正值的计算及二值化过程,然后对分割后的图像去噪,最后采用最小临界矩形法提取成熟番茄果实。试验结果表明,该方法对温室成熟番茄图像有较好的提取效果,识别正确率达到98.3%,与基于归一化红绿色差灰...
Keyword:
Reprint Author's Address:
Email:
Source :
农业工程学报
Year: 2017
Issue: S1
Volume: 33
Page: 322-327
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: