Indexed by:
Abstract:
针对多目标差分进化算法最优解难以获取的问题,提出一种基于参数动态调整的多目标差分进化(AMODE)算法.AMODE算法通过设计变异率和交叉率的自适应调整策略,实现进化过程中变异率和交叉率的动态调整,均衡多目标差分进化算法的局部搜索能力和全局探索能力,获得收敛性、多样性和均匀性较好的最优解.实验结果表明,基于参数动态调整的AMODE算法能够有效改善多目标差分进化算法的逼近能力(IGD)和均匀性(SP),具有较好的优化效果.
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
Year: 2017
Issue: 11
Volume: 32
Page: 1985-1990
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13