• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Naixin (Wang, Naixin.) (Scholars:王乃鑫) | Ji, Shulan (Ji, Shulan.) (Scholars:纪树兰) | Zhang, Guojun (Zhang, Guojun.) | Li, Jie (Li, Jie.) | Wang, Lin (Wang, Lin.)

Indexed by:

EI Scopus SCIE

Abstract:

Organic-inorganic nanohybrids are believed to be one of the most promising new membrane materials for separation applications. In this study, a new nanohybrid membrane was prepared by incorporating graphene oxide (GO) into polyelectrolyte complexes (PECs). Poly(ethyleneimine)-modified GO and polyacrylic acid were sequentially assembled onto a hydrolyzed polyacrylonitrile ultrafiltration supporting membrane. The nanohybrid membranes were subsequently immersed in polyvinyl alcohol solutions and cross-linked by glutaraldehyde. The assembly process was systematically investigated by scanning electron microscopy, fourier transform infrared analysis, an electrokinetic analyzer, a nano-indenter and thermogravimetric analyzer. The nanoindentation and thermogravimetric experiments in particular indicated that the GO incorporation greatly improved the Young's modulus, hardness and thermal stability of the membranes. It was found that the resulting membranes had excellent dye removal capacity. The retention of Congo red could reach 99.5% with the permeance of 8.4 kg/m(2) h MPa. In the case of the separation of monovalent and divalent ions, such membranes show good nanofiltration properties. The retention of Mg2+ and Na+ were 92.6% and 43.2%, respectively. Additionally, it was demonstrated that this GO/PECs nanohybrid membrane is also a good candidate for the pervaporation dehydration of different solvent-water mixtures. The water content could be enriched from 5.0 wt.% (in the feed) to 95.4 wt.% (in the permeate) with the permeate flux of 268 g/m(2)h in the pervaporation of ethanol/water mixture (50 degrees C). (C) 2012 Elsevier B.V. All rights reserved.

Keyword:

Polyelectrolyte complex Nanofiltration Graphene oxide Pervaporation Self-assembly

Author Community:

  • [ 1 ] [Wang, Naixin]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Shulan]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jie]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Lin]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Zhang, Guojun]Beijing Univ Technol, Coll Environm & Energy Engn, Ctr Membrane Technol, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

Year: 2012

Volume: 213

Page: 318-329

1 5 . 1 0 0

JCR@2022

ESI Discipline: ENGINEERING;

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 233

SCOPUS Cited Count: 252

ESI Highly Cited Papers on the List: 25 Unfold All

  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7
  • 2022-5
  • 2022-3
  • 2022-3
  • 2022-3
  • 2022-1
  • 2021-11
  • 2021-9
  • 2021-7
  • 2021-5
  • 2021-3
  • 2021-1
  • 2020-11
  • 2020-9
  • 2020-7
  • 2020-5
  • 2020-3
  • 2020-1
  • 2019-11
  • 2019-9
  • 2018-11

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 10

Online/Total:438/10625601
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.