• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jin, Cheng-Gang (Jin, Cheng-Gang.) | Yin, Ming-Jie (Yin, Ming-Jie.) | Wu, Jia-Kai (Wu, Jia-Kai.) | Zhang, Wen-Hai (Zhang, Wen-Hai.) | Wang, Naixin (Wang, Naixin.) (Scholars:王乃鑫) | An, Quan-Fu (An, Quan-Fu.) (Scholars:安全福)

Indexed by:

EI Scopus SCIE

Abstract:

Acetic acid, as one of the top 50 important chemicals, has been broadly applied for production of cellulose acetate, polyvinyl acetate, as well as synthetic fibers and fabrics, and so on. However, the acetic acid production always involves in water which should be removed. Thus, energy-efficient and environmental-friendly dehydration of acetic acid is highly required in current chemical industry. In this study, we proposed a 'hard-crosslinking-soft' strategy to construct a kind of organic-inorganic hybrid membrane by doping aminated silica (SiO2-NH2) nanoparticles into the polyelectrolyte complex (PEC) membrane for dehydration of acetic acid. The addition of SiO2-NH2 nanoparticles plays two roles: one is as the 'hard' part to overcome the over-swelling issue of 'soft' PEC membrane; another is creation of more free volume for water passing through. As a result, the proposed hybrid membrane could simultaneously augment the permeability and selectivity of the pervaporation membrane, breaking the notorious 'trade-off' restriction of separation membranes. The preparation parameters and operation condition on the performance of the membrane were detailed studied. The optimized membrane offers a flux of 1225 g/m2h and a separation factor of 1442 in dehydration of 10 wt% water/acetic acid mixtures at 50 degrees C, with pervaporation separation index of 1.77 x 106 g/m2h, among the top-tier separation performance. Besides, the prepared membrane could stably work for 144 h due to the chemical crosslinking by glyoxal, promising for the practical application for acetic acid dehydration.

Keyword:

Pervaporation Organic-inorganic hybridization Acetic acid dehydration Polyelectrolyte complex

Author Community:

  • [ 1 ] [Jin, Cheng-Gang]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Yin, Ming-Jie]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Wen-Hai]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Naixin]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [An, Quan-Fu]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 6 ] [Wu, Jia-Kai]Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, Hangzhou 310027, Peoples R China

Reprint Author's Address:

  • 安全福

    [Yin, Ming-Jie]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China;;[An, Quan-Fu]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

JOURNAL OF MEMBRANE SCIENCE

ISSN: 0376-7388

Year: 2022

Volume: 643

9 . 5

JCR@2022

9 . 5 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:53

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 12

SCOPUS Cited Count: 13

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:427/10637810
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.