• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Hao (Chen, Hao.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

Indexed by:

CPCI-S

Abstract:

Blocked flow channel can enhance the reactants transfer process and improve the output performance of proton exchange membrane fuel cells. In waved-like blocked flow channels, the flow resistance at the windward side can be reduced because of the streamline shape design. However, the vortexes, which account for the power loss, can be formed at the leeward sides. In this work, a two-dimensional, two-phase, non-isotherinal and steady state model is developed, and flow channels with different wave-like blocks are designed to investigate the effects of windward sides and leeward side on output performance of proton exchange membrane fuel cells. Simulation results show that: when the heights and weights of wave-like blocks are both fixed, longer leeward side of blocks facilitate to reduce the vortexes forming and decrease the pumping powers, in the meantime, the net powers and the efficiency are improved. However, when the leeward sides of blocks are shortened and windward sides are lengthened, vortexes forming in flow channels are strengthened and pumping powers are improved, and the net powers are reduced. Moreover, when the leeward side is prolonged, the liquid water in flow channels can be removed more easily.

Keyword:

pumping power flow channel design Proton exchange membrane fuel cell two-phase flow flow characteristics

Author Community:

  • [ 1 ] Beijing Univ Technol, Coll Environm & Energy Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]100 Pingleyuan, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

2018 7TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY RESEARCH AND APPLICATIONS (ICRERA)

ISSN: 2377-6897

Year: 2018

Page: 831-835

Language: English

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:507/10519218
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.