Indexed by:
Abstract:
Atomic diffusion in soldering process leads to growth and stress developed in the intermetallic compound layer in solder joints. The stress and morphological evolution of the intermetallic compound layer, which is driven by the stress, result in degradation of mechanical performance of solder joints. Microstructure of the intermetallic compound layer in solder joints is modeled. The model consists of the Cu6Sn5 layer. The Cu atom concentration distribution in the intermetallic compound layer is derived based on the Fick's second law. Then the diffusion-induced stress is obtained analytically by transforming atomic diffusion effects into bulk strain. The results show that the diffusion-induced stress is compressive. When the diffusion time is long enough, the diffusion-induced stress has a linear distribution along the thickness of the intermetallic compound layer.
Keyword:
Reprint Author's Address:
Email:
Source :
2011 12TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY AND HIGH DENSITY PACKAGING (ICEPT-HDP)
Year: 2011
Page: 514-518
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: