• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Yue Ping (Chen, Yue Ping.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chong Fang (Ma, Chong Fang.)

Indexed by:

CPCI-S EI Scopus

Abstract:

A three-dimensional, two-phase, multiple-component, unsteady model for the anode side of passive direct methanol fuel cells is presented in this work. The model is formed by a drift-flux model and can capture in-plane distributions of species along different directions in the cell. After grid independency test, this model is used to investigate numerically transport behaviors in the anode of liquid feed direct methanol fuel cells. The results illustrate the feasibility of the passively delivering methanol to the electrochemical reaction site, and characterize the relevant transport phenomena. Moreover, the evolution of species concentration, velocities along different directions in the cell and the mass transfer limitation were also presented. The three-dimensional model is valuable for understanding and predicting mass transfer in passive direct methanol fuel cells.

Keyword:

mass transfer direct methanol fuel cells three dimensional dynamic models

Author Community:

  • [ 1 ] [Chen, Yue Ping]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chong Fang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3

ISSN: 1022-6680

Year: 2011

Volume: 233-235

Page: 2615-2618

Language: English

Cited Count:

WoS CC Cited Count: 1

SCOPUS Cited Count: 2

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Online/Total:675/10655416
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.