Indexed by:
Abstract:
Organic solvent nanofiltration (OSN) is an emerging membrane-based technology for molecular separation. The design and fabrication of membranes with unique structures are important to obtain high performance. Herein, ZIF-8 nanoparticles are grown in situ on the surface of graphene oxide (GO) nanosheets and then assembled on a tubular ceramic substrate through a vacuum-assisted assembly method. ZIF-8 anchored on the GO nanosheets is evolved into ZnS polyhedra with a hollow structure through in situ sulfurization. The formed ZnS@GO membrane is composed of a layered structure of GO with the interlayer intercalated by ZnS hollow polyhedra and demonstrates high permeance for organic solvents. Compared to that of the ZIF-8@GO membrane, the permeance of the ZnS@GO membrane is enhanced by 4.4-fold when separating dyes from methanol, indicating their promising potential in the application of organic solvent nanofiltration.
Keyword:
Reprint Author's Address:
Email:
Source :
ACS APPLIED NANO MATERIALS
ISSN: 2574-0970
Year: 2020
Issue: 6
Volume: 3
Page: 5874-5880
5 . 9 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 19
Affiliated Colleges: