• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dong, Ning (Dong, Ning.) | Chen, Mengyue (Chen, Mengyue.) | Ye, Qing (Ye, Qing.) (Scholars:叶青) | Zhang, Dan (Zhang, Dan.) | Dai, Hongxing (Dai, Hongxing.) (Scholars:戴洪兴)

Indexed by:

Scopus SCIE

Abstract:

The Ni-loaded cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) catalysts (xNi/OMS-2: x = 1, 3, 5, and 10 wt%) were prepared by a pre-incorporation method. Physicochemical properties of the as-synthesized materials were characterized by means of various techniques, and their catalytic activities for CO, ethyl acetate, and toluene oxidation were evaluated.The loading of Ni played an important role in improving physicochemical propertiesof OMS-2. Among all of the samples, 5Ni/OMS-2 exhibited the best catalytic activity, with the T-90 being 155 degrees C for CO oxidation at a space velocity (SV) of 60,000 mL/(g center dot h), 225 degrees C for ethyl acetate oxidation at an SV of 240,000 mL/(g center dot h), and 300 degrees C for toluene oxidation at an SV of 240,000 mL/(g center dot h), which was due to its high Mn3+ content and O-ads concentration, good low-temperature reducibility and lattice oxygen mobility, and strong interaction between the Ni species and the OMS-2 support. In addition, catalytic mechanisms of the oxidation of three pollutants over 5Ni/OMS-2 were also studied. The oxidation of CO, ethyl acetate, and toluene over the catalysts took place first via the activated adsorption, then intermediates formation, and finally complete conversion of the formed intermediates to CO2 and H2O.

Keyword:

CO oxidation cryptomelane-typemanganese oxide octahedral molecular sieve supported nickel catalyst ethyl acetate oxidation toluene oxidation

Author Community:

  • [ 1 ] [Dong, Ning]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Dept Environm Sci,Key Lab Beijing Reg Air Pollut, Beijing 100124, Peoples R China
  • [ 2 ] [Chen, Mengyue]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Dept Environm Sci,Key Lab Beijing Reg Air Pollut, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Qing]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Dept Environm Sci,Key Lab Beijing Reg Air Pollut, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Dan]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Dept Environm Sci,Key Lab Beijing Reg Air Pollut, Beijing 100124, Peoples R China
  • [ 5 ] [Dai, Hongxing]Beijing Univ Technol, Fac Environm & Life,Key Lab Adv Funct Mat, Sch Environm & Chem Engn,Key Lab Beijing Reg Air, Educ Minist China,Beijing Key Lab Green Catalysis, Beijing 100124, Peoples R China
  • [ 6 ] [Dai, Hongxing]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Lab Catalysis Chem & Nanosci,Dept Environm Chem E, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 叶青 戴洪兴

    [Ye, Qing]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Dept Environm Sci,Key Lab Beijing Reg Air Pollut, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Fac Environm & Life,Key Lab Adv Funct Mat, Sch Environm & Chem Engn,Key Lab Beijing Reg Air, Educ Minist China,Beijing Key Lab Green Catalysis, Beijing 100124, Peoples R China;;[Dai, Hongxing]Beijing Univ Technol, Sch Environm & Chem Engn, Fac Environm & Life, Lab Catalysis Chem & Nanosci,Dept Environm Chem E, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

CATALYSTS

Year: 2021

Issue: 5

Volume: 11

3 . 9 0 0

JCR@2022

ESI Discipline: CHEMISTRY;

ESI HC Threshold:96

JCR Journal Grade:2

Cited Count:

WoS CC Cited Count: 9

SCOPUS Cited Count: 10

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 8

Online/Total:1069/10665204
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.