Indexed by:
Abstract:
As the core technology of deep learning, convolutional neural networks have been widely applied in a variety of computer vision tasks and have achieved state-of-the-art performance. However, it's difficult and inefficient for them to deal with high dimensional image signals due to the dramatic increase of training parameters. In this paper, we present a lightweight and efficient MS-Net for the multi-dimensional(MD) image processing, which provides a promising way to handle MD images, especially for devices with limited computational capacity. It takes advantage of a series of one dimensional convolution kernels and introduces a separable structure in the ConvNet throughout the learning process to handle MD image signals. Meanwhile, multiple group convolutions with kernel size 1 x 1 are used to extract channel information. Then the information of each dimension and channel is fused by a fusion module to extract the complete image features. Thus the proposed MS-Net significantly reduces the training complexity, parameters and memory cost. The proposed MS-Net is evaluated on both 2D and 3D benchmarks CIFAR-10, CIFAR-100 and KTH. Extensive experimental results show that the MS-Net achieves competitive performance with greatly reduced computational and memory cost compared with the state-of-the-art ConvNet models.
Keyword:
Reprint Author's Address:
Email:
Source :
MULTIMEDIA TOOLS AND APPLICATIONS
ISSN: 1380-7501
Year: 2021
Issue: 17
Volume: 80
Page: 25673-25688
3 . 6 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: