Indexed by:
Abstract:
In this study, a new type of self-lubricating nanoparticle diamond grinding wheel with MoS2 and TiO2 nanoparticles as filling materials was proposed. According to the macro parameters (grinding force) and micro parameters (surface roughness, surface morphology, grinding wheel wear), the lubricated characteristic on tool and workpiece surface with various concentrations of nanoparticles was studied. The research indicated that the composite nanoparticles can effectively improve the lubricated characteristic of the tool. The nanoparticles released from the grinding wheel can participate in lubrication and decrease the adhesion of abrasive grains to the workpiece surface, so as to enhance the surface quality of the workpiece. Moreover, there is a suitable addition range of composite nanoparticles in the grinding wheel. Adding too little or exceeding this range will weaken the friction reduction performance of the nanoparticles. It had the best lubrication performance and surface quality of the workpiece at a nanoparticle volume concentration of 8%.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
ISSN: 0268-3768
Year: 2021
Issue: 7-8
Volume: 113
Page: 2385-2393
3 . 4 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:87
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: