Indexed by:
Abstract:
Traditional optical switches relying on the weak, volatile thermo-optic or electro-optic effects of Si or SiN waveguides show a high consumption and large footprint. In this paper, we reported an electric-driven phase change optical switch consisting of a Si waveguide, Ge2Sb2Te5 (GST) thin film and graphene heater suitable for large-scale integration and high-speed switching. The reversible transition between the amorphous and crystalline states was achieved by applying two different voltage pulses of 1.4 V (SET) and 4 V (RESET). The optical performance of the proposed switch showed a high extinction ration of 44-46 dB in a wide spectral range (1525-1575 nm), an effective index variation of Delta n (eff) = 0.49 and a mode loss variation of Delta alpha = 15 dB mu m(-1) at the wavelength of 1550 nm. In thermal simulations, thanks to the ultra-high thermal conductivity of graphene, the proposed switch showed that the consumption for the SET process was only 3.528 pJ with a 1.4 V pulse of 5 ns, while a 4 V pulse of 1.5 ns was needed for RESET process with a consumption of 1.05 nJ. Our work is helpful to analyze the thermal-conduction phase transition process of on-chip phase change optical switches, and the design of the low-energy-consumption switch is conducive to the integrated application of photonic chips.
Keyword:
Reprint Author's Address:
Email:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2021
Issue: 40
Volume: 32
3 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:2
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: