• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Han, Yan (Han, Yan.) | Zhang, Cancan (Zhang, Cancan.) | Wu, Yuting (Wu, Yuting.) (Scholars:吴玉庭) | Lu, Yuanwei (Lu, Yuanwei.) (Scholars:鹿院卫)

Indexed by:

EI Scopus SCIE

Abstract:

Molten salts are subjected to heating-cooling thermal shock cycle in the operation of concentrating solar power (CSP) plant. In this work, the quaternary nitrate-nitrite (QNN) mixed salt and Solar salt are comparatively studied under different thermal shock conditions. After 500 thermal shock test cycles, morphological and structural analysis of samples are carried out by wavelength dispersive x-ray fluorescence (WD-XRF), Fourier-transform infrared (FTIR), x-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Meanwhile, thermos-physical properties of samples are comparatively analyzed. The results show the average melting point and average initial crystal temperature of QNN mixed salt are maximum 135 degrees C, 82.6 degrees C lower than that of Solar salt, respectively. The decomposition temperature of QNN mixed salt is maximum 52.1 degrees C higher than that of Solar salt. The specific heat of QNN mixed salt increases with the increasing of thermal shock temperature. The specific heat and thermal conductivity of QNN mixed salt maximally increase 15.46% and 9.8% compared with its base salt, respectively. Meanwhile, the thermal conductivity and viscosity of QNN mixed salt are slight higher than that of Solar salt. The Solar salt viscosity decreases with the increasing of thermal shock temperature. (C) 2021 Elsevier Ltd. All rights reserved.

Keyword:

Thermal energy storage Concentrating solar power Thermal shock Molten salt

Author Community:

  • [ 1 ] [Han, Yan]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Cancan]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Wu, Yuting]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Lu, Yuanwei]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Zhang, Cancan]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

RENEWABLE ENERGY

ISSN: 0960-1481

Year: 2021

Volume: 175

Page: 1041-1051

8 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 24

SCOPUS Cited Count: 27

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:407/10649564
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.