Indexed by:
Abstract:
针对移动机器人在分布式环境中的导航问题,提出一种基于深度强化学习的区域化视觉导航方法.首先,根据分布式环境特征,在不同区域内独立学习控制策略,同时构建区域化模型,实现导航过程中控制策略的切换和结合.然后,为使机器人具有更好的目标导向行为,在区域导航子模块中增加奖励预测任务,并结合经验池回放奖励序列.最后,在原有探索策略的基础上添加景深约束,防止因碰撞导致的遍历停滞.结果表明:奖励预测和景深避障的应用有助于提升导航性能.在多区域环境测试过程中,区域化模型在训练时间和所获奖励上展现出单一模型不具备的优势,表明其能更好地应对大范围导航.此外,实验在第一人称视角的3D环境下进行,状态是部分可观察的,利于实际应用.
Keyword:
Reprint Author's Address:
Email:
Source :
上海交通大学学报
ISSN: 1006-2467
Year: 2021
Issue: 5
Volume: 55
Page: 575-585
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 7
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: