• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Hang (Guo, Hang.) (Scholars:郭航) | Zhao, Qiang (Zhao, Qiang.) | Ye, Fang (Ye, Fang.)

Indexed by:

EI Scopus SCIE

Abstract:

Proton exchange membrane fuel cells are widely utilized in the areas of aerospace, military and vehicles. Enhancing the reactant transportation and improving water, heat management can effectively increase the electrochemical reaction rate and power output. Orientated-type flow channels have been proved to be effective on improving mass transporting and enhancing performance. In this study, a flow field plate with transparent observation window, whose channel side wall is designed as transparent side-plates, is fabricated to achieve the side-view observation on liquid movement behaviors inside fuel cells. The visualization results of reactant gas and liquid water generation and flowing behaviors in channel regions are observed through the side direction for the first time. Experimental results infer that: orientated-type flow channels having baffles affect droplet generation, moving and shape in gas flow channels, and higher current densities result in more liquid water generation. The baffle downstream region having sudden expanded region slows down droplet moving, and baffle upstream sides accelerates droplet moving. Moreover, the generated heat of electrochemical reaction cannot satisfy maintaining a higher cell working temperature requirement, and an extra heating procedure is required.(c) 2022 Elsevier Ltd. All rights reserved.

Keyword:

Side-view observation method Two-phase flow Orientated-type gas channel Mass transportation Proton exchange membrane fuel cell

Author Community:

  • [ 1 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Qiang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Energy & Power Engn, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

RENEWABLE ENERGY

ISSN: 0960-1481

Year: 2022

Volume: 188

Page: 603-618

8 . 7

JCR@2022

8 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count: 17

SCOPUS Cited Count: 20

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 14

Affiliated Colleges:

Online/Total:580/10507065
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.