• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, Lifang (Wu, Lifang.) (Scholars:毋立芳) | Deng, Sinuo (Deng, Sinuo.) | Zhang, Heng (Zhang, Heng.) | Shi, Ge (Shi, Ge.)

Indexed by:

SSCI Scopus SCIE

Abstract:

Sentiment is a high-level abstraction, and it is a challenging task to accurately extract sentimental features from visual contents due to the "affective gap". Previous works focus on extracting more concrete sentimental features of individual objects by introducing saliency detection or instance segmentation into their models, neglecting the interaction among objects. Inspired by the observation that interaction among objects can impact the sentiment of images, we propose the Sentiment Interaction Distillation (SID) Network, which utilizes object sentimental interaction to guide feature learning. Specifically, we first utilize a panoptic segmentation method to obtain objects in images; then, we propose a sentiment-related edge generation method and employ Graph Convolution Network to aggregate and propagate object relation representation. In addition, we propose a knowledge distillation framework to utilize interaction information guiding global context feature learning, which can avoid noisy features introduced by error propagation and a varying number of objects. Experimental results show that our method outperforms the state-of-the-art algorithm, e.g., about 1.2% improvement on the Flickr dataset and 1.7% on the most challenging subset of Twitter I. It is demonstrated that the reasonable use of interaction features can improve the performance of sentiment analysis.

Keyword:

knowledge distillation convolutional neural networks visual sentiment analysis sentiment classification

Author Community:

  • [ 1 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Deng, Sinuo]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

APPLIED SCIENCES-BASEL

Year: 2022

Issue: 7

Volume: 12

2 . 7

JCR@2022

2 . 7 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count: 4

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:855/10568917
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.