Abstract:
肺癌是对人类健康威胁最大的肿瘤疾病,早期发现对于患者的生存和康复至关重要。现有方法采用二维多视角框架学习肺结节特征并简单集成多个视角特征实现肺结节良恶性分类。然而,这些方法存在不能有效捕捉空间特性和忽略了多个视角的差异性问题。因此,本文提出三维(3D)多视角卷积神经网络(MVCNN)框架,为进一步解决多视角模型中各视角的差异性问题,在特征融合阶段引入挤压激励(SE)模块,构建了3D多视角挤压激励卷积神经网络(MVSECNN)模型。最后,采用统计学方法对模型预测与医生注释结果进行分析。在独立测试集中,模型的分类准确率和灵敏度分别为96.04%和98.59%,均高于目前已有方法;模型预测与病理诊断...
Keyword:
Reprint Author's Address:
Email:
Source :
生物医学工程学杂志
Year: 2022
Issue: 03
Volume: 39
Page: 452-461
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 17
Affiliated Colleges: