Indexed by:
Abstract:
Few studies have investigated the eccentric compression behavior of fiber-reinforced polymer (FRP) confined reinforced concrete (RC) columns. In particular, the studies on the eccentrically loaded large-sized FRP-confined RC columns are limited. In this study, the mechanical responses and size effect behavior of FRP-confined RC square columns under eccentric loading will be investigated experimentally and numerically. Nine carbon fiber-reinforced polymer (CFRP) confined columns and three control columns with cross-sectional widths (h) from 200 to 600 mm will be tested, in which the influence of the structural size and eccentricity ratio (e/h(0)) will be studied. The failure patterns, load-deflection responses, and nominal stress-strain curves of CFRP and longitudinal reinforcement will be presented. The nominal axial strength and corresponding lateral deflection of tested CFRP-confined RC columns size effect existed. Subsequently, a finite-element (FE) model was developed and verified, in which the mesoscale structure of the concrete was considered. The experimental results are supplemented by FE modeling with a wider range of structural sizes and e/h(0). In addition, the predicted equation for nominal axial strength for eccentrically loaded CFRP-confined RC columns will be established, of which the accuracy will be verified by comparison with the experimental and numerical data.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF COMPOSITES FOR CONSTRUCTION
ISSN: 1090-0268
Year: 2021
Issue: 4
Volume: 25
4 . 6 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:116
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: