Indexed by:
Abstract:
The segmentation of cardiac chambers and the quantification of clinical functional metrics in dynamic echo-cardiography are the keys to the clinical diagnosis of heart disease. Identifying the end-diastolic frames (EDFs) and end-systolic frames (ESFs) and manually segmenting the left ventricle in the echocardiographic cardiac cycle before obtaining the left ventricular ejection fraction (LVEF) is a time-consuming and tedious task for clinicians. In this work, we proposed a deep learning-based fully automated echocardiographic analysis method. We pro-posed a multi-attention efficient feature fusion network (MAEF-Net) to automatically segment the left ventricle. Then, EDFs and ESFs in all cardiac cycles were automatically detected to compute LVEF. The MAEF-Net method used a multi-attention mechanism to guide the network to capture heartbeat features effectively, while sup-pressing noise, and incorporated deep supervision mechanism and spatial pyramid feature fusion to enhance feature extraction capabilities. The proposed method was validated on the public EchoNet-Dynamic dataset (n = 1226). The Dice similarity coefficient (DSC) of the left ventricular segmentation reached (93.10 +/- 2.22)%, and the mean absolute error (MAE) of cardiac phase detection was (2.36 +/- 2.23) frames. The MAE for predicting LVEF was 6.29 %. The proposed method was also validated on a private clinical dataset (n = 22). The DSC of the left ventricular segmentation reached (92.81 +/- 2.85)%, and the MAE of cardiac phase detection was (2.25 +/- 2.27) frames. The MAE for predicting LVEF was 5.91 %, and the Pearson correlation coefficient r reached 0.96. The proposed method may be used as a new method for automatic left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Our code and trained models will be made available publicly at https://github.com/xiaojinmao-code/MAEF-Net.
Keyword:
Reprint Author's Address:
Email:
Source :
ULTRASONICS
ISSN: 0041-624X
Year: 2023
Volume: 127
4 . 2 0 0
JCR@2022
ESI Discipline: CLINICAL MEDICINE;
ESI HC Threshold:14
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 30
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: