Abstract:
为了提升深度学习模型在不均衡小样本激光焊接表面缺陷数据集上的性能,优化了小样本数据量输入下的对抗生成网络(Generative Adversarial Network,GAN)模型.通过对比激光焊接缺陷和其他用于测试对抗生成网络的公共数据集在特征复杂度上的区别,设计了一种全新的OCM(one class mixup)模块,并将其引入至针对有限样本的stylegan2-ada中,以提升GAN的性能,加快其收敛.试验结果表明,在分类模型上,通过OCM-stylegan2-ada生成的数据集,比原始数据集性能提升40%,比使用mixup和stylegan2-ada增强后的数据集性能上提升20%,同时生成的焊接缺陷图片质量大幅提升.
Keyword:
Reprint Author's Address:
Email:
Source :
焊接学报
ISSN: 0253-360X
Year: 2022
Issue: 10
Volume: 43
Page: 43-48
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: