Indexed by:
Abstract:
To investigate the effect of construction disturbance on vertical vibration characteristics of pipe pile, a simplified mechanical model of vertical vibration for pipe pile embedded in radially inhomogeneous soil was proposed by employing the viscous damping model and considering pipe pile as uniform cross-section and elasticity based on the plane stain model of annular complex stiffness transfer. Firstly, based on Laplace and complex stiffness transfer method, the composite stiffness of pile-soil interface was derived. Secondly, the frequency domain analytical solution of pile head dynamic impedance was obtained by using the compatibility condition. Finally, effects of the slenderness ratio of pile, the inner and outer diameters of pile, the elastic modulus of pile, the viscous coefficient of soil, and the construction disturbance intensity and range on the complex impedance at the pile head were analyzed. The results showed that the amplitude and resonance frequency of complex impedance at the pile head decreased with the increase of slenderness ratio of pile; the inner soil attenuated vertical vibration of pipe pile to a certain extent; the more the softening (hardening) intensity of the surrounding soil was, the lower (higher) the amplitude of complex impedance became; the amplitude of complex impedance at the pile head increased (decreased) with the enlargement of softening (hardening) range due to construction disturbance. It is suggested that the radial inhomogeneity should be considered in the analysis of vertical vibration for pipe pile when the construction disturbance is distinct. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Harbin Institute of Technology
ISSN: 0367-6234
Year: 2019
Issue: 2
Volume: 51
Page: 136-145
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: