Abstract:
为了解决基于静态环境假设的同步定位与地图构建(simultaneous localization and mapping,SLAM)在处理动态物体时系统定位精度降低、鲁棒性变差的问题,提出一种面向室内动态环境的语义视觉SLAM系统。该系统以ORB_SLAM2为基础,添加了动态目标检测线程。对输入图像提取ORB特征的同时,通过使用YOLOv5s网络进行动态目标检测,并结合光流法和对极几何约束方法,共同筛选动态特征点,最后,使用静态特征点进行位姿估计。通过使用慕尼黑工业大学(Technical University of Munich,TUM)数据集将该系统和ORB_SLAM2进行比较,结果表明,该系统显著降低了轨迹误差。与DS-SLAM、DynaSLAM等动态环境下的系统相比,该系统可有效平衡语义视觉SLAM系统位姿估计的准确性、鲁棒性和快速性。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2023
Issue: 08
Page: 842-850
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: