Indexed by:
Abstract:
Surface and interface engineering of composite photocatalysts are effective ways to enhance the dynamics of photo-generated charge carriers. In this work, SrTiO3/Ti3C2 MXene (STO/TC) Schottky heterojunction is constructed by in-situ growth of SrTiO3 (STO) on Ti3C2 MXene (TC) through Sr(OH)2 etching the surfaces of TC. This in-situ growth strategy not only creates the tight chemically bonded interfaces by SrTiO3 nanoparticles uniformly anchoring on the surface of two-dimensional Ti3C2 MXene nanosheets for promoting the photo-generated charge carrier separation, but also introduces surface Ti vacancies as the efficient catalytic active sites to accelerate the charge carrier transfer process for efficient hydrogen production. The photocatalytic system constructed by interface and surface engineering optimizes the photo-generated charge carrier dynamics and refines the photocatalytic hydrogen evolution performance (6.8 times higher than pristine SrTiO3) and stability. This work is expected to provide an alternative strategy to construct highly efficient photocatalysts with hydrogen evolution. © 2023 Elsevier Inc.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Colloid and Interface Science
ISSN: 0021-9797
Year: 2024
Volume: 653
Page: 482-492
9 . 9 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:3
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 37
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: