Indexed by:
Abstract:
The active earth pressure of earth-retaining structures (ERSs) is highly dependent on rainfall infiltration. In prior studies, ERS stability was primarily explored based on backfills under unsaturated steady flows or those that were saturated or dry while neglecting the time-dependent properties of the rainfall infiltration procedure. Accordingly, this study assessed the stability of a three-dimensional (3D) unsaturated ERS under diverse modes of rainfall infiltration by exploiting the upper bound theorem of limit analysis. A modified Green-Ampt model was adopted to consider the development of the wetting front; thereafter, an energy equilibrium equation was built to analytically derive the active earth pressure. The effects of the wall friction angle, ERS 3D geometrical characteristics, rainfall infiltration intensity and duration, and rainfall patterns on the active earth pressure coefficient were investigated. According to the results, the wall friction angle and 3D geometrical characteristics lead to a smaller active earth pressure and a superior stability state. The matric suction is a direct determinant of the active earth pressure and stability of the ERS; these exert major effects on the infiltration rate of rainfall into the soil. Furthermore, the rainfall pattern and intensity also have significant impacts on the active earth pressure and the development of the wetting front. © 2023 American Society of Civil Engineers.
Keyword:
Reprint Author's Address:
Email:
Source :
International Journal of Geomechanics
ISSN: 1532-3641
Year: 2024
Issue: 1
Volume: 24
3 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:3
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: