Indexed by:
Abstract:
Exploiting the linear Mohr-Coulomb strength criterion, the stability computation for earth retaining structures (ERSs) by estimating the active earth pressure has been mainly conducted by setting the plane strain 2D. In this research, the modified MC strength criterion with reduced tensile strength is put into use for the stability analysis of ERSs employing a 3D multi-cone collapse analysis mechanism. After computing the coefficient of active earth pressure, the optimal results are captured from a combination of the genetic algorithm and particle swarm optimization. Research findings are validated through comparison, while the influences of soil tensile strength threshold and 3D geometrical features over the stability measures and critical failure modes of ERSs are explored by parametric assessment. It is revealed in this work that the linear MC strength criterion derives conservative estimates of the active earth pressure. The tensile strength threshold of soil has a pronounced effect on both the objective solutions and failure shapes, especially for the ERSs under a greater dimensionless cohesion c/gamma H. This work provides a straightforward approach to perform a 3D stability analysis of ERSs considering a tensile strength cutoff, without a pre-assumed distribution of the rupture angle.
Keyword:
Reprint Author's Address:
Email:
Source :
KSCE JOURNAL OF CIVIL ENGINEERING
ISSN: 1226-7988
Year: 2024
Issue: 7
Volume: 28
Page: 2639-2646
2 . 2 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: