Indexed by:
Abstract:
Organic Rankine cycle (ORC) can improve engine power by recovering exhaust energy. This paper co-optimizes the engine-ORC combined system's power and NOx emission, with decision variables of the engine's excess air ratio, spark advance angle, as well as ORC's pump and expander speeds. Firstly, a simulation model of the combined system is established and validated. Then, the initial dataset is generated by the D-optimum Latin hypercube method and simulation model. The artificial neural network (ANN) prediction models of NOx emission and power are established based on these datasets. Finally, the co-optimization is conducted using the ANN prediction model and genetic algorithm. Focusing on maximizing the combined system's power results in an 18.30 % increase in power, and a significant reduction in brake-specific fuel consumption (BSFC) and brake specific NOx (BSNOx) by 10.10 % and 71.30 %, respectively, compared to the unoptimized basis. Targeting the lowest BSNOx leads to a limited 1.20 % increase in power output; however, it results in a 19.50 % increase in BSFC. When optimizing for both system output and BSNOx, the output remains 13.5 % above the unoptimized basis. Meanwhile, up to 89.8 % of BSNOx can be eliminated with negligible deterioration in BSFC. This study could be used for engine performance enhancements.
Keyword:
Reprint Author's Address:
Email:
Source :
ENERGY
ISSN: 0360-5442
Year: 2023
Volume: 289
9 . 0 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: