Indexed by:
Abstract:
Rock masses consist of nesting rock blocks with various scales separated by weak structural layers, and their complex hierarchical structures play a significant role in dynamic deformation and stress wave propagation. In this paper, based on the Cosserat theory, a dynamic model of pendulum-type and rotational waves in blocky rock mass with complex hierarchical structures is established to determine the influence of hierarchical structures on dynamic deformation. Then, aiming at low-frequency and low-velocity characteristics of pendulum-type waves, dispersion equations of waves are determined and solved in different hierarchical structures based on the Bloch theorem, and furthermore, the dispersion relation and velocity characteristics of waves are investigated. Finally, mechanism of low-frequency characteristics of pendulum-type waves is revealed on the basis of solid energy band theory, and the possibility of pendulum-type and rotational waves inducing rock bursts is discussed based on the research results. It is indicated that ignoring higher-order hierarchical structures of rock masses may underestimate displacement and overall deformation of rock masses, resulting in unsafe numerical results. Under the action of long wave disturbance, for the first mode pendulum-type waves(the acoustic branches), the dispersion is not significant and propagation velocity decreases, and higher-order hierarchical structures inside rock masses hinder the wave propagation. However, the dispersion of other waves(the optical branches) is significant so that they hardly exist and propagate independently. The low-frequency pendulum-type waves are dominant, which have slower attenuation and longer propagation distance than the high-order mode waves and traditional P and S-waves. © 2024 Academia Sinica. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Chinese Journal of Rock Mechanics and Engineering
ISSN: 1000-6915
Year: 2024
Issue: 2
Volume: 43
Page: 424-438
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: