Abstract:
哺乳动物的运动学习机制已得到广泛研究,犬科动物可以根据环境反馈的引导性信息自主地学习运动技能,对其提供更为特定的训练引导可以加快其对相关任务的学习速度.受上述启发,在软演员-评论家算法(SAC)的基础上提出一种基于期望状态奖励引导的强化学习算法(DSG-SAC),利用环境中的状态反馈机制来引导四足机器人进行有效探索,可以提高四足机器人仿生步态学习效果,并提高训练效率.在该算法中,策略网络与评价网络先近似拟合期望状态观测与当前状态的误差,再经过当前状态的正反馈后输出评价函数与动作,使四足机器人朝着期望的方向动作.将所提出算法在四足机器人上进行验证,通过实验结果可知,所提出的算法能够完成四足机器人的仿生步态学习.进一步,设计消融实验来探讨超参数温度系数和折扣因子对算法的影响,实验结果表明,改进后的算法具有比单纯的SAC算法更加优越的性能.
Keyword:
Reprint Author's Address:
Email:
Source :
控制与决策
Year: 2024
Issue: 05
Volume: 39
Page: 1461-1468
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: