Abstract:
动物对自然界的适应能力是由环境选择与适者生存决定的,四足哺乳动物可以通过种群的进化逐步适应环境的变化,提高其对环境的适应度和种群的生存率.基于上述启发,该文在软演员-评论家(SAC)算法基础上提出一种基于优化并行强化学习的算法OP-SAC,该算法使用进化策略与强化学习交替训练,通过知识共享和知识继承优化四足机器人学习效果,提高训练效率.算法验证结果显示,OP-SAC算法能够完成四足机器人的仿生步态学习;对比实验验证出OP-SAC算法比其他结合了进化策略的SAC算法具有更加优越的鲁棒性;设计消融实验证明了知识共享和知识继承策略使算法的训练效果获得较大提升.
Keyword:
Reprint Author's Address:
Email:
Source :
清华大学学报(自然科学版)
ISSN: 1000-0054
Year: 2024
Issue: 10
Volume: 64
Page: 1696-1705
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: