Indexed by:
Abstract:
PurposeWe designed a dual-modal fusion network to detect glaucomatous optic neuropathy, which utilized both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images.MethodsA total of 327 healthy subjects (410 eyes) and 87 glaucomatous optic neuropathy patients (113 eyes) were included. The retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images were used as predictors in the dual-modal fusion network to diagnose glaucoma. The area under the receiver operation characteristic curve, accuracy, sensitivity, and specificity were measured to compare our method and other approaches.ResultsThe accuracy of our dual-modal fusion network using both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images was 0.935 and we achieved a significant larger area under the receiver operation characteristic curve of our method with 0.968 (95% confidence interval, 0.937-0.999). For only using retinal nerve fiber layer thickness, we compared the area under the receiver operation characteristic curves between our network and other three approaches: 0.916 (95% confidence interval, 0.855, 0.977) with our optical coherence tomography Net; 0.841 (95% confidence interval, 0.749, 0.933) with Clock sectors division; 0.862 (95% confidence interval, 0.757, 0.968) with inferior, superior, nasal temporal sectors division and 0.886 (95% confidence interval, 0.815, 0.957) with optic disc sectors division. For only using fundus images, we compared the area under the receiver operation characteristic curves between our network and other two approaches: 0.867 (95% confidence interval: 0.781-0.952) with our Image Net; 0.774 (95% confidence interval: 0.670, 0.878) with ResNet50; 0.747 (95% confidence interval: 0.628, 0.866) with VGG16.ConclusionOur dual-modal fusion network utilizing both retinal nerve fiber layer thickness from optical coherence tomography reports and fundus images can diagnose glaucoma with a much better performance than the current approaches based on optical coherence tomography only or fundus images only.
Keyword:
Reprint Author's Address:
Email:
Source :
CURRENT EYE RESEARCH
ISSN: 0271-3683
Year: 2024
Issue: 12
Volume: 49
Page: 1253-1259
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: