• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yu, Rui (Yu, Rui.) | Zhou, Zhuhuang (Zhou, Zhuhuang.) | Xu, Meng (Xu, Meng.) | Gao, Meng (Gao, Meng.) | Zhu, Meitong (Zhu, Meitong.) | Wu, Shuicai (Wu, Shuicai.) | Gao, Xiaorong (Gao, Xiaorong.) | Bin, Guangyu (Bin, Guangyu.)

Indexed by:

EI Scopus SCIE

Abstract:

Objective. Monitoring the depth of anaesthesia (DOA) during surgery is of critical importance. However, during surgery electroencephalography (EEG) is usually subject to various disturbances that affect the accuracy of DOA. Therefore, accurately estimating noise in EEG and reliably assessing DOA remains an important challenge. In this paper, we proposed a signal quality index (SQI) network (SQINet) for assessing the EEG signal quality and a DOA network (DOANet) for analyzing EEG signals to precisely estimate DOA. The two networks are termed SQI-DOANet. Approach. The SQINet contained a shallow convolutional neural network to quickly determine the quality of the EEG signal. The DOANet comprised a feature extraction module for extracting features, a dual attention module for fusing multi-channel and multi-scale information, and a gated multilayer perceptron module for extracting temporal information. The performance of the SQI-DOANet model was validated by training and testing the model on the large VitalDB database, with the bispectral index (BIS) as the reference standard. Main results. The proposed DOANet yielded a Pearson correlation coefficient with the BIS score of 0.88 in the five-fold cross-validation, with a mean absolute error (MAE) of 4.81. The mean Pearson correlation coefficient of SQI-DOANet with the BIS score in the five-fold cross-validation was 0.82, with an MAE of 5.66. Significance. The SQI-DOANet model outperformed three compared methods. The proposed SQI-DOANet may be used as a new deep learning method for DOA estimation. The code of the SQI-DOANet will be made available publicly at https://github.com/YuRui8879/SQI-DOANet.

Keyword:

depth of anaesthesia electroencephalogram signal quality index deep learning attention mechanism

Author Community:

  • [ 1 ] [Yu, Rui]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhou, Zhuhuang]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Meng]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhu, Meitong]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Shuicai]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Bin, Guangyu]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Xu, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Gao, Xiaorong]Tsinghua Univ, Dept Biomed Engn, Beijing 100084, Peoples R China

Reprint Author's Address:

  • [Bin, Guangyu]Beijing Univ Technol, Coll Chem & Life Sci, Dept Biomed Engn, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF NEURAL ENGINEERING

ISSN: 1741-2560

Year: 2024

Issue: 4

Volume: 21

4 . 0 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Affiliated Colleges:

Online/Total:493/10572909
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.