• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Pan, H. (Pan, H..) | Li, C. (Li, C..) | Li, H.-N. (Li, H.-N..) | Ma, R. (Ma, R..) | Guo, J. (Guo, J..)

Indexed by:

EI Scopus SCIE

Abstract:

Local site conditions may pose a significant influence on the seismic responses of submarine pipelines by altering both the offshore motion propagation and soil-structure interaction (SSI). This paper aims to provide an in-depth understanding of the influence regularity of local site conditions on the seismic performance of free-spanning submarine pipelines (FSSPs). For this purpose, a suite of underwater shaking table tests were performed to investigate the seismic responses of FSSP subjected to the offshore spatial motions at three site categories. Response comparison factor ((Formula presented.)) is defined to quantify the structural response discrepancies caused by the seismic inputs at different sites. The test results indicate that responses of the studied model FSSP gradually increase as spatial offshore motions at softer soil sites are employed as inputs; and the values of (Formula presented.) vary with a maximum magnitude of up to 40%–60% for different response indices when the site soil changes from fine sand to clay. Subsequently, the corresponding numerical simulations are carried out to reproduce the seismic responses of the test model. The experimental and numerical results meet a good agreement, indicating that the developed numerical modeling method can accurately predict the seismic responses of FSSPs. Following this verified modeling method and using the p-y approach to address the SSI effect, fragility surfaces of the studied FSSP are derived in terms of PGA and site parameter (Formula presented.) (shear-wave velocity in the top 30 m of the soil profile) via probabilistic seismic demand analyses. The impact of local site conditions on the seismic performance of the FSSP is quantitatively examined by comparing the fragility curves corresponding to various (Formula presented.). Furthermore, a fast seismic damage assessment method is proposed for efficiently evaluating the performance of FSSPs buried in various offshore soil conditions. This approach proves beneficial for designers and decision-makers, enabling accurate estimation of seismic damage and facilitating the implementation of post-earthquake maintenance measures for FSSPs. © 2024 John Wiley & Sons Ltd.

Keyword:

local site conditions fragility analysis free-spanning submarine pipelines underwater shaking table tests fast assessment method

Author Community:

  • [ 1 ] [Pan H.]Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang, China
  • [ 2 ] [Pan H.]School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China
  • [ 3 ] [Pan H.]School of Infrastructure Engineering, Dalian University of Technology, Dalian, China
  • [ 4 ] [Li C.]School of Infrastructure Engineering, Dalian University of Technology, Dalian, China
  • [ 5 ] [Li H.-N.]School of Infrastructure Engineering, Dalian University of Technology, Dalian, China
  • [ 6 ] [Ma R.]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing, China
  • [ 7 ] [Guo J.]Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang, China
  • [ 8 ] [Guo J.]School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

Earthquake Engineering and Structural Dynamics

ISSN: 0098-8847

Year: 2024

Issue: 14

Volume: 53

Page: 4223-4247

4 . 5 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:752/10689626
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.