• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Guo, Ruixue (Guo, Ruixue.) | Fan, Xing (Fan, Xing.) | Cai, Jianyu (Cai, Jianyu.) | Li, Shuangye (Li, Shuangye.) | Zhang, Yanli (Zhang, Yanli.) | Liu, Jiasheng (Liu, Jiasheng.) | Li, Jian (Li, Jian.)

Indexed by:

Scopus SCIE

Abstract:

A series of CuFe and Ag-modified CuFe composite catalysts were prepared for low-temperature selective catalytic oxidation of ammonia (NH3-SCO). Significant synergistic effects existed between Cu and Fe oxides in the CuFe (7:12) catalyst for catalyzing NH3 oxidation. Loading 6 wt.% Ag over CuFe(7:12) further enhanced NH3 conversion and N2 selectivity. At 200 degrees C, NH3 conversion and N2 selectivity reached 97.1 % and 79.3 %, respectively, over 6Ag/CuFe(7:12). Besides the exceptional catalytic effects of Ag species, the increased surface area, formation of CuFe2O4, improved reducibility of Cu and Fe oxides, and increased acid sites due to the composite of Cu and Fe and modification with Ag contributed to the superior performance of the 6Ag/CuFe(7:12) catalyst in NH3-SCO. In-situ DRIFTS results showed that NH3 oxidation might follow the internal selective catalytic reduction mechanism: NH3 was dehydrogenated and oxidized to NOx and nitrate species, and the formed NOx and nitrate species were reduced by the remaining NH3, -NH2 and -NH species to N2 and H2O. Loading Ag over CuFe(7:12) suppressed the formation of NO and NO2 but promoted that of N2O during NH3 oxidation, which could be attributed to the enhanced formation and decomposition of NH4NO3 in the presence of Ag.

Keyword:

Ammonia slip Selective catalytic oxidation (SCO) Ag/CuO-Fe 2 O 3 catalyst Internal selective catalytic reduction (i-SCR)

Author Community:

  • [ 1 ] [Guo, Ruixue]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Fan, Xing]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Cai, Jianyu]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Shuangye]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Yanli]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Liu, Jiasheng]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Jian]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Fan, Xing]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China;;[Cai, Jianyu]Beijing Univ Technol, Dept Environm Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

SURFACES AND INTERFACES

ISSN: 2468-0230

Year: 2024

Volume: 55

6 . 2 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 1

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:547/10573758
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.