Indexed by:
Abstract:
A V-cycle multigrid method for the Hellan-Herrmann-Johnson (HHJ) discretization of the Kirchhoff plate bending problems is developed in this paper. It is shown that the contraction number of the V-cycle multigrid HHJ mixed method is bounded away from one uniformly with respect to the mesh size. The uniform convergence is achieved for the V-cycle multigrid method with only one smoothing step and without full elliptic regularity assumption. The key is a stable decomposition of the kernel space which is derived from an exact sequence of the HHJ mixed method, and the strengthened Cauchy Schwarz inequality. Some numerical experiments are provided to confirm the proposed V-cycle multigrid method. The exact sequences of the HHJ mixed method and the corresponding commutative diagram is of some interest independent of the current context.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF SCIENTIFIC COMPUTING
ISSN: 0885-7474
Year: 2018
Issue: 2
Volume: 76
Page: 673-696
2 . 5 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:63
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: