• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Xu, Kun (Xu, Kun.) (Scholars:许坤) | Ge, Yaojun (Ge, Yaojun.) | Zhao, Lin (Zhao, Lin.) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力)

Indexed by:

EI Scopus SCIE

Abstract:

The dynamic stability of vortex-induced vibration (VIV) of circular cylinders has been well investigated. However, there have been few studies on this topic for bridge decks. To fill this gap, this study focuses on the dynamic stability of a VIV system for bridge decks. Some recently developed techniques for nonlinear dynamics are adopted, for example, the state space reconstruction and Poincare mapping techniques. The dynamic stability of the VIV system is assessed by combining analytical and experimental approaches, and a typical bridge deck is analyzed as a case study. Results indicate that the experimentally observed hysteresis phenomenon corresponds to the occurrence of saddle-node bifurcation of the VIV system. Through the method proposed in this study, the evolution of dynamic stability of the VIV system versus wind velocity is established. The dynamic characteristics of the system are further clarified, which offers a useful clue to understanding the VIV system for bridge decks, while providing valuable information for mathematical modeling.

Keyword:

wind tunnel experiment bifurcation dynamic stability Vortex-induced vibration bridge deck

Author Community:

  • [ 1 ] [Xu, Kun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Yaojun]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China
  • [ 4 ] [Zhao, Lin]Tongji Univ, State Key Lab Disaster Reduct Civil Engn, Shanghai 200092, Peoples R China

Reprint Author's Address:

  • 许坤

    [Xu, Kun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF STRUCTURAL STABILITY AND DYNAMICS

ISSN: 0219-4554

Year: 2018

Issue: 3

Volume: 18

3 . 6 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:156

Cited Count:

WoS CC Cited Count: 22

SCOPUS Cited Count: 23

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:374/10629093
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.