Indexed by:
Abstract:
Molybdenum disulfide (MoS2), a promising non-precious electrocatalyst for the hydrogen evolution reaction with two-dimensional layered structure, has received increasing attention in recent years. Its electrocatalytic performance has been limited by the low active site content and poor conductivity. Herein, we report a facile and general ultrafast laser ablation method to synthesize MoS2 quantum dots (MS-QDs) for electrocatalytic HER with fully exposed active sites and highly enhanced conductivity. The MS-QDs were prepared by ultrafast laser ablation of the corresponding bulk material in aqueous solution, during which they were partially oxidized and formed defective structures. The as-prepared MS-QDs demonstrated high activity and stability in the electrocatalytic HER, owing to their very large surface area, defective structure, abundance of active sites, and high conductivity. The present MS-QDs can also find application in optics, sensing, energy storage, and conversion technologies.
Keyword:
Reprint Author's Address:
Source :
NANO RESEARCH
ISSN: 1998-0124
Year: 2018
Issue: 2
Volume: 11
Page: 751-761
9 . 9 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:145
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 81
SCOPUS Cited Count: 82
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: